| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfima | Structured version Visualization version GIF version | ||
| Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfima | ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf 25529 | . . . 4 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 3 | ioof 13408 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 4 | ffn 6688 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (,) Fn (ℝ* × ℝ*) |
| 6 | fnovrn 7564 | . . . 4 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) | |
| 7 | 5, 6 | mp3an1 1450 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) |
| 8 | imaeq2 6027 | . . . . 5 ⊢ (𝑥 = (𝐵(,)𝐶) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝐵(,)𝐶))) | |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = (𝐵(,)𝐶) → ((◡𝐹 “ 𝑥) ∈ dom vol ↔ (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)) |
| 10 | 9 | rspccva 3587 | . . 3 ⊢ ((∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol ∧ (𝐵(,)𝐶) ∈ ran (,)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 11 | 2, 7, 10 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 12 | ndmioo 13333 | . . . . . 6 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅) | |
| 13 | 12 | imaeq2d 6031 | . . . . 5 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = (◡𝐹 “ ∅)) |
| 14 | ima0 6048 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2780 | . . . 4 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = ∅) |
| 16 | 0mbl 25440 | . . . 4 ⊢ ∅ ∈ dom vol | |
| 17 | 15, 16 | eqeltrdi 2836 | . . 3 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 18 | 17 | adantl 481 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ ¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 19 | 11, 18 | pm2.61dan 812 | 1 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 𝒫 cpw 4563 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 (,)cioo 13306 volcvol 25364 MblFncmbf 25515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 |
| This theorem is referenced by: mbfimaicc 25532 mbfres 25545 mbfmulc2lem 25548 mbfmax 25550 mbfposr 25553 mbfaddlem 25561 mbfsup 25565 mbfi1fseqlem4 25619 itg2monolem1 25651 itg2gt0 25661 itg2cnlem1 25662 itg2cnlem2 25663 mbfposadd 37661 itg2addnclem2 37666 iblabsnclem 37677 ftc1anclem1 37687 ftc1anclem5 37691 ftc1anclem6 37692 mbfresmf 46737 |
| Copyright terms: Public domain | W3C validator |