Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfima | Structured version Visualization version GIF version |
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfima | ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf 24373 | . . . 4 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
2 | 1 | biimpac 482 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
3 | ioof 12914 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
4 | ffn 6498 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (,) Fn (ℝ* × ℝ*) |
6 | fnovrn 7333 | . . . 4 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) | |
7 | 5, 6 | mp3an1 1449 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) |
8 | imaeq2 5893 | . . . . 5 ⊢ (𝑥 = (𝐵(,)𝐶) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝐵(,)𝐶))) | |
9 | 8 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = (𝐵(,)𝐶) → ((◡𝐹 “ 𝑥) ∈ dom vol ↔ (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)) |
10 | 9 | rspccva 3523 | . . 3 ⊢ ((∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol ∧ (𝐵(,)𝐶) ∈ ran (,)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
11 | 2, 7, 10 | syl2an 599 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
12 | ndmioo 12841 | . . . . . 6 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅) | |
13 | 12 | imaeq2d 5897 | . . . . 5 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = (◡𝐹 “ ∅)) |
14 | ima0 5913 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
15 | 13, 14 | eqtrdi 2789 | . . . 4 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = ∅) |
16 | 0mbl 24284 | . . . 4 ⊢ ∅ ∈ dom vol | |
17 | 15, 16 | eqeltrdi 2841 | . . 3 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
18 | 17 | adantl 485 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ ¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
19 | 11, 18 | pm2.61dan 813 | 1 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∅c0 4209 𝒫 cpw 4485 × cxp 5517 ◡ccnv 5518 dom cdm 5519 ran crn 5520 “ cima 5522 Fn wfn 6328 ⟶wf 6329 (class class class)co 7164 ℝcr 10607 ℝ*cxr 10745 (,)cioo 12814 volcvol 24208 MblFncmbf 24359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-er 8313 df-map 8432 df-pm 8433 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-inf 8973 df-oi 9040 df-dju 9396 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-z 12056 df-uz 12318 df-q 12424 df-rp 12466 df-xadd 12584 df-ioo 12818 df-ico 12820 df-icc 12821 df-fz 12975 df-fzo 13118 df-fl 13246 df-seq 13454 df-exp 13515 df-hash 13776 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-clim 14928 df-sum 15129 df-xmet 20203 df-met 20204 df-ovol 24209 df-vol 24210 df-mbf 24364 |
This theorem is referenced by: mbfimaicc 24376 mbfres 24389 mbfmulc2lem 24392 mbfmax 24394 mbfposr 24397 mbfaddlem 24405 mbfsup 24409 mbfi1fseqlem4 24463 itg2monolem1 24495 itg2gt0 24505 itg2cnlem1 24506 itg2cnlem2 24507 mbfposadd 35436 itg2addnclem2 35441 iblabsnclem 35452 ftc1anclem1 35462 ftc1anclem5 35466 ftc1anclem6 35467 mbfresmf 43798 |
Copyright terms: Public domain | W3C validator |