MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfima Structured version   Visualization version   GIF version

Theorem mbfima 24375
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfima ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)

Proof of Theorem mbfima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf 24373 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
21biimpac 482 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
3 ioof 12914 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6498 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . 4 (,) Fn (ℝ* × ℝ*)
6 fnovrn 7333 . . . 4 (((,) Fn (ℝ* × ℝ*) ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,))
75, 6mp3an1 1449 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,))
8 imaeq2 5893 . . . . 5 (𝑥 = (𝐵(,)𝐶) → (𝐹𝑥) = (𝐹 “ (𝐵(,)𝐶)))
98eleq1d 2817 . . . 4 (𝑥 = (𝐵(,)𝐶) → ((𝐹𝑥) ∈ dom vol ↔ (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol))
109rspccva 3523 . . 3 ((∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ∧ (𝐵(,)𝐶) ∈ ran (,)) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)
112, 7, 10syl2an 599 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)
12 ndmioo 12841 . . . . . 6 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅)
1312imaeq2d 5897 . . . . 5 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐹 “ (𝐵(,)𝐶)) = (𝐹 “ ∅))
14 ima0 5913 . . . . 5 (𝐹 “ ∅) = ∅
1513, 14eqtrdi 2789 . . . 4 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐹 “ (𝐵(,)𝐶)) = ∅)
16 0mbl 24284 . . . 4 ∅ ∈ dom vol
1715, 16eqeltrdi 2841 . . 3 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)
1817adantl 485 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ ¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)
1911, 18pm2.61dan 813 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113  wral 3053  c0 4209  𝒫 cpw 4485   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522   Fn wfn 6328  wf 6329  (class class class)co 7164  cr 10607  *cxr 10745  (,)cioo 12814  volcvol 24208  MblFncmbf 24359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-rp 12466  df-xadd 12584  df-ioo 12818  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-sum 15129  df-xmet 20203  df-met 20204  df-ovol 24209  df-vol 24210  df-mbf 24364
This theorem is referenced by:  mbfimaicc  24376  mbfres  24389  mbfmulc2lem  24392  mbfmax  24394  mbfposr  24397  mbfaddlem  24405  mbfsup  24409  mbfi1fseqlem4  24463  itg2monolem1  24495  itg2gt0  24505  itg2cnlem1  24506  itg2cnlem2  24507  mbfposadd  35436  itg2addnclem2  35441  iblabsnclem  35452  ftc1anclem1  35462  ftc1anclem5  35466  ftc1anclem6  35467  mbfresmf  43798
  Copyright terms: Public domain W3C validator