![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfima | Structured version Visualization version GIF version |
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfima | ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf 25481 | . . . 4 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
3 | ioof 13422 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
4 | ffn 6708 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (,) Fn (ℝ* × ℝ*) |
6 | fnovrn 7576 | . . . 4 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) | |
7 | 5, 6 | mp3an1 1444 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) |
8 | imaeq2 6046 | . . . . 5 ⊢ (𝑥 = (𝐵(,)𝐶) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝐵(,)𝐶))) | |
9 | 8 | eleq1d 2810 | . . . 4 ⊢ (𝑥 = (𝐵(,)𝐶) → ((◡𝐹 “ 𝑥) ∈ dom vol ↔ (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)) |
10 | 9 | rspccva 3603 | . . 3 ⊢ ((∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol ∧ (𝐵(,)𝐶) ∈ ran (,)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
11 | 2, 7, 10 | syl2an 595 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
12 | ndmioo 13349 | . . . . . 6 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅) | |
13 | 12 | imaeq2d 6050 | . . . . 5 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = (◡𝐹 “ ∅)) |
14 | ima0 6067 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
15 | 13, 14 | eqtrdi 2780 | . . . 4 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = ∅) |
16 | 0mbl 25392 | . . . 4 ⊢ ∅ ∈ dom vol | |
17 | 15, 16 | eqeltrdi 2833 | . . 3 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
18 | 17 | adantl 481 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ ¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
19 | 11, 18 | pm2.61dan 810 | 1 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∅c0 4315 𝒫 cpw 4595 × cxp 5665 ◡ccnv 5666 dom cdm 5667 ran crn 5668 “ cima 5670 Fn wfn 6529 ⟶wf 6530 (class class class)co 7402 ℝcr 11106 ℝ*cxr 11245 (,)cioo 13322 volcvol 25316 MblFncmbf 25467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-q 12931 df-rp 12973 df-xadd 13091 df-ioo 13326 df-ico 13328 df-icc 13329 df-fz 13483 df-fzo 13626 df-fl 13755 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-sum 15631 df-xmet 21223 df-met 21224 df-ovol 25317 df-vol 25318 df-mbf 25472 |
This theorem is referenced by: mbfimaicc 25484 mbfres 25497 mbfmulc2lem 25500 mbfmax 25502 mbfposr 25505 mbfaddlem 25513 mbfsup 25517 mbfi1fseqlem4 25572 itg2monolem1 25604 itg2gt0 25614 itg2cnlem1 25615 itg2cnlem2 25616 mbfposadd 37029 itg2addnclem2 37034 iblabsnclem 37045 ftc1anclem1 37055 ftc1anclem5 37059 ftc1anclem6 37060 mbfresmf 45965 |
Copyright terms: Public domain | W3C validator |