![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfima | Structured version Visualization version GIF version |
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfima | β’ ((πΉ β MblFn β§ πΉ:π΄βΆβ) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf 25145 | . . . 4 β’ (πΉ:π΄βΆβ β (πΉ β MblFn β βπ₯ β ran (,)(β‘πΉ β π₯) β dom vol)) | |
2 | 1 | biimpac 480 | . . 3 β’ ((πΉ β MblFn β§ πΉ:π΄βΆβ) β βπ₯ β ran (,)(β‘πΉ β π₯) β dom vol) |
3 | ioof 13424 | . . . . 5 β’ (,):(β* Γ β*)βΆπ« β | |
4 | ffn 6718 | . . . . 5 β’ ((,):(β* Γ β*)βΆπ« β β (,) Fn (β* Γ β*)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 β’ (,) Fn (β* Γ β*) |
6 | fnovrn 7582 | . . . 4 β’ (((,) Fn (β* Γ β*) β§ π΅ β β* β§ πΆ β β*) β (π΅(,)πΆ) β ran (,)) | |
7 | 5, 6 | mp3an1 1449 | . . 3 β’ ((π΅ β β* β§ πΆ β β*) β (π΅(,)πΆ) β ran (,)) |
8 | imaeq2 6056 | . . . . 5 β’ (π₯ = (π΅(,)πΆ) β (β‘πΉ β π₯) = (β‘πΉ β (π΅(,)πΆ))) | |
9 | 8 | eleq1d 2819 | . . . 4 β’ (π₯ = (π΅(,)πΆ) β ((β‘πΉ β π₯) β dom vol β (β‘πΉ β (π΅(,)πΆ)) β dom vol)) |
10 | 9 | rspccva 3612 | . . 3 β’ ((βπ₯ β ran (,)(β‘πΉ β π₯) β dom vol β§ (π΅(,)πΆ) β ran (,)) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
11 | 2, 7, 10 | syl2an 597 | . 2 β’ (((πΉ β MblFn β§ πΉ:π΄βΆβ) β§ (π΅ β β* β§ πΆ β β*)) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
12 | ndmioo 13351 | . . . . . 6 β’ (Β¬ (π΅ β β* β§ πΆ β β*) β (π΅(,)πΆ) = β ) | |
13 | 12 | imaeq2d 6060 | . . . . 5 β’ (Β¬ (π΅ β β* β§ πΆ β β*) β (β‘πΉ β (π΅(,)πΆ)) = (β‘πΉ β β )) |
14 | ima0 6077 | . . . . 5 β’ (β‘πΉ β β ) = β | |
15 | 13, 14 | eqtrdi 2789 | . . . 4 β’ (Β¬ (π΅ β β* β§ πΆ β β*) β (β‘πΉ β (π΅(,)πΆ)) = β ) |
16 | 0mbl 25056 | . . . 4 β’ β β dom vol | |
17 | 15, 16 | eqeltrdi 2842 | . . 3 β’ (Β¬ (π΅ β β* β§ πΆ β β*) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
18 | 17 | adantl 483 | . 2 β’ (((πΉ β MblFn β§ πΉ:π΄βΆβ) β§ Β¬ (π΅ β β* β§ πΆ β β*)) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
19 | 11, 18 | pm2.61dan 812 | 1 β’ ((πΉ β MblFn β§ πΉ:π΄βΆβ) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 β c0 4323 π« cpw 4603 Γ cxp 5675 β‘ccnv 5676 dom cdm 5677 ran crn 5678 β cima 5680 Fn wfn 6539 βΆwf 6540 (class class class)co 7409 βcr 11109 β*cxr 11247 (,)cioo 13324 volcvol 24980 MblFncmbf 25131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xadd 13093 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-xmet 20937 df-met 20938 df-ovol 24981 df-vol 24982 df-mbf 25136 |
This theorem is referenced by: mbfimaicc 25148 mbfres 25161 mbfmulc2lem 25164 mbfmax 25166 mbfposr 25169 mbfaddlem 25177 mbfsup 25181 mbfi1fseqlem4 25236 itg2monolem1 25268 itg2gt0 25278 itg2cnlem1 25279 itg2cnlem2 25280 mbfposadd 36583 itg2addnclem2 36588 iblabsnclem 36599 ftc1anclem1 36609 ftc1anclem5 36613 ftc1anclem6 36614 mbfresmf 45503 |
Copyright terms: Public domain | W3C validator |