| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfima | Structured version Visualization version GIF version | ||
| Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfima | ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf 25557 | . . . 4 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 2 | 1 | biimpac 478 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 3 | ioof 13349 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 4 | ffn 6656 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (,) Fn (ℝ* × ℝ*) |
| 6 | fnovrn 7527 | . . . 4 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) | |
| 7 | 5, 6 | mp3an1 1450 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) ∈ ran (,)) |
| 8 | imaeq2 6009 | . . . . 5 ⊢ (𝑥 = (𝐵(,)𝐶) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝐵(,)𝐶))) | |
| 9 | 8 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = (𝐵(,)𝐶) → ((◡𝐹 “ 𝑥) ∈ dom vol ↔ (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol)) |
| 10 | 9 | rspccva 3572 | . . 3 ⊢ ((∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol ∧ (𝐵(,)𝐶) ∈ ran (,)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 11 | 2, 7, 10 | syl2an 596 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 12 | ndmioo 13274 | . . . . . 6 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅) | |
| 13 | 12 | imaeq2d 6013 | . . . . 5 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = (◡𝐹 “ ∅)) |
| 14 | ima0 6030 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2784 | . . . 4 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) = ∅) |
| 16 | 0mbl 25468 | . . . 4 ⊢ ∅ ∈ dom vol | |
| 17 | 15, 16 | eqeltrdi 2841 | . . 3 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 18 | 17 | adantl 481 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ ¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| 19 | 11, 18 | pm2.61dan 812 | 1 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∅c0 4282 𝒫 cpw 4549 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 Fn wfn 6481 ⟶wf 6482 (class class class)co 7352 ℝcr 11012 ℝ*cxr 11152 (,)cioo 13247 volcvol 25392 MblFncmbf 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xadd 13014 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-xmet 21286 df-met 21287 df-ovol 25393 df-vol 25394 df-mbf 25548 |
| This theorem is referenced by: mbfimaicc 25560 mbfres 25573 mbfmulc2lem 25576 mbfmax 25578 mbfposr 25581 mbfaddlem 25589 mbfsup 25593 mbfi1fseqlem4 25647 itg2monolem1 25679 itg2gt0 25689 itg2cnlem1 25690 itg2cnlem2 25691 mbfposadd 37727 itg2addnclem2 37732 iblabsnclem 37743 ftc1anclem1 37753 ftc1anclem5 37757 ftc1anclem6 37758 mbfresmf 46861 |
| Copyright terms: Public domain | W3C validator |