MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorebas Structured version   Visualization version   GIF version

Theorem ioorebas 13353
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorebas (𝐴(,)𝐵) ∈ ran (,)

Proof of Theorem ioorebas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) = ∅)
2 iooid 13275 . . . 4 (0(,)0) = ∅
3 ioof 13349 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6656 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 0xr 11166 . . . . 5 0 ∈ ℝ*
7 fnovrn 7527 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
85, 6, 6, 7mp3an 1463 . . . 4 (0(,)0) ∈ ran (,)
92, 8eqeltrri 2830 . . 3 ∅ ∈ ran (,)
101, 9eqeltrdi 2841 . 2 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) ∈ ran (,))
11 n0 4302 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
12 eliooxr 13306 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
13 fnovrn 7527 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
145, 13mp3an1 1450 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
1512, 14syl 17 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1615exlimiv 1931 . . 3 (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1711, 16sylbi 217 . 2 ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ∈ ran (,))
1810, 17pm2.61ine 3012 1 (𝐴(,)𝐵) ∈ ran (,)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282  𝒫 cpw 4549   × cxp 5617  ran crn 5620   Fn wfn 6481  wf 6482  (class class class)co 7352  cr 11012  0cc0 11013  *cxr 11152  (,)cioo 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-ioo 13251
This theorem is referenced by:  iooordt  23133  iooretop  24681  blssioo  24711  xrtgioo  24723  ioorinv2  25504  ioorinv  25505  uniioombllem2a  25511  ismbf  25557
  Copyright terms: Public domain W3C validator