|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ioorebas | Structured version Visualization version GIF version | ||
| Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| ioorebas | ⊢ (𝐴(,)𝐵) ∈ ran (,) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) = ∅) | |
| 2 | iooid 13415 | . . . 4 ⊢ (0(,)0) = ∅ | |
| 3 | ioof 13487 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 4 | ffn 6736 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) | 
| 6 | 0xr 11308 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 7 | fnovrn 7608 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,)) | |
| 8 | 5, 6, 6, 7 | mp3an 1463 | . . . 4 ⊢ (0(,)0) ∈ ran (,) | 
| 9 | 2, 8 | eqeltrri 2838 | . . 3 ⊢ ∅ ∈ ran (,) | 
| 10 | 1, 9 | eqeltrdi 2849 | . 2 ⊢ ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) ∈ ran (,)) | 
| 11 | n0 4353 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) | |
| 12 | eliooxr 13445 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
| 13 | fnovrn 7608 | . . . . . 6 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) | |
| 14 | 5, 13 | mp3an1 1450 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) | 
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,)) | 
| 16 | 15 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,)) | 
| 17 | 11, 16 | sylbi 217 | . 2 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ∈ ran (,)) | 
| 18 | 10, 17 | pm2.61ine 3025 | 1 ⊢ (𝐴(,)𝐵) ∈ ran (,) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 𝒫 cpw 4600 × cxp 5683 ran crn 5686 Fn wfn 6556 ⟶wf 6557 (class class class)co 7431 ℝcr 11154 0cc0 11155 ℝ*cxr 11294 (,)cioo 13387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-ioo 13391 | 
| This theorem is referenced by: iooordt 23225 iooretop 24786 blssioo 24816 xrtgioo 24828 ioorinv2 25610 ioorinv 25611 uniioombllem2a 25617 ismbf 25663 | 
| Copyright terms: Public domain | W3C validator |