MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorebas Structured version   Visualization version   GIF version

Theorem ioorebas 12564
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorebas (𝐴(,)𝐵) ∈ ran (,)

Proof of Theorem ioorebas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) = ∅)
2 iooid 12491 . . . 4 (0(,)0) = ∅
3 ioof 12560 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6278 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 0xr 10403 . . . . 5 0 ∈ ℝ*
7 fnovrn 7069 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
85, 6, 6, 7mp3an 1591 . . . 4 (0(,)0) ∈ ran (,)
92, 8eqeltrri 2903 . . 3 ∅ ∈ ran (,)
101, 9syl6eqel 2914 . 2 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) ∈ ran (,))
11 n0 4160 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
12 eliooxr 12520 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
13 fnovrn 7069 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
145, 13mp3an1 1578 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
1512, 14syl 17 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1615exlimiv 2031 . . 3 (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1711, 16sylbi 209 . 2 ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ∈ ran (,))
1810, 17pm2.61ine 3082 1 (𝐴(,)𝐵) ∈ ran (,)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wex 1880  wcel 2166  wne 2999  c0 4144  𝒫 cpw 4378   × cxp 5340  ran crn 5343   Fn wfn 6118  wf 6119  (class class class)co 6905  cr 10251  0cc0 10252  *cxr 10390  (,)cioo 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-ioo 12467
This theorem is referenced by:  iooordt  21392  iooretop  22939  blssioo  22968  xrtgioo  22979  ioorinv2  23741  ioorinv  23742  uniioombllem2a  23748  ismbf  23794
  Copyright terms: Public domain W3C validator