MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorebas Structured version   Visualization version   GIF version

Theorem ioorebas 13419
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorebas (𝐴(,)𝐵) ∈ ran (,)

Proof of Theorem ioorebas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) = ∅)
2 iooid 13341 . . . 4 (0(,)0) = ∅
3 ioof 13415 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6691 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 0xr 11228 . . . . 5 0 ∈ ℝ*
7 fnovrn 7567 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
85, 6, 6, 7mp3an 1463 . . . 4 (0(,)0) ∈ ran (,)
92, 8eqeltrri 2826 . . 3 ∅ ∈ ran (,)
101, 9eqeltrdi 2837 . 2 ((𝐴(,)𝐵) = ∅ → (𝐴(,)𝐵) ∈ ran (,))
11 n0 4319 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
12 eliooxr 13372 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
13 fnovrn 7567 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
145, 13mp3an1 1450 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
1512, 14syl 17 . . . 4 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1615exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ∈ ran (,))
1711, 16sylbi 217 . 2 ((𝐴(,)𝐵) ≠ ∅ → (𝐴(,)𝐵) ∈ ran (,))
1810, 17pm2.61ine 3009 1 (𝐴(,)𝐵) ∈ ran (,)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  c0 4299  𝒫 cpw 4566   × cxp 5639  ran crn 5642   Fn wfn 6509  wf 6510  (class class class)co 7390  cr 11074  0cc0 11075  *cxr 11214  (,)cioo 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ioo 13317
This theorem is referenced by:  iooordt  23111  iooretop  24660  blssioo  24690  xrtgioo  24702  ioorinv2  25483  ioorinv  25484  uniioombllem2a  25490  ismbf  25536
  Copyright terms: Public domain W3C validator