MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnfsuppbi Structured version   Visualization version   GIF version

Theorem frnfsuppbi 8838
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.)
Assertion
Ref Expression
frnfsuppbi ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))

Proof of Theorem frnfsuppbi
StepHypRef Expression
1 ffun 6490 . . . . 5 (𝐹:𝐼𝑆 → Fun 𝐹)
21adantl 485 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → Fun 𝐹)
3 fex 6962 . . . . . . 7 ((𝐹:𝐼𝑆𝐼𝑉) → 𝐹 ∈ V)
43expcom 417 . . . . . 6 (𝐼𝑉 → (𝐹:𝐼𝑆𝐹 ∈ V))
54adantr 484 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆𝐹 ∈ V))
65imp 410 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝐹 ∈ V)
7 simplr 768 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝑍𝑊)
8 funisfsupp 8814 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
92, 6, 7, 8syl3anc 1368 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
10 frnsuppeq 7817 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
1110imp 410 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1211eleq1d 2896 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
139, 12bitrd 282 . 2 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
1413ex 416 1 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  cdif 3907  {csn 4540   class class class wbr 5039  ccnv 5527  cima 5531  Fun wfun 6322  wf 6324  (class class class)co 7130   supp csupp 7805  Fincfn 8484   finSupp cfsupp 8809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-supp 7806  df-fsupp 8810
This theorem is referenced by:  frnnn0fsupp  11932
  Copyright terms: Public domain W3C validator