![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fucof1 | Structured version Visualization version GIF version |
Description: The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
fuco1.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fuco1.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
Ref | Expression |
---|---|
fucof1 | ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescofuf 48843 | . 2 ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | |
2 | fucofval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
3 | fucofval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
4 | fucofval.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
5 | fuco1.o | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
6 | fuco1.w | . . . . 5 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
7 | 2, 3, 4, 5, 6 | fuco1 48890 | . . . 4 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) |
8 | 6 | reseq2d 6004 | . . . 4 ⊢ (𝜑 → ( ∘func ↾ 𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
9 | 7, 8 | eqtrd 2777 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
10 | 9, 6 | feq12d 6732 | . 2 ⊢ (𝜑 → (𝑂:𝑊⟶(𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))) |
11 | 1, 10 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 × cxp 5691 ↾ cres 5695 ⟶wf 6565 (class class class)co 7438 Func cfunc 17914 ∘func ccofu 17916 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-cat 17722 df-cid 17723 df-func 17918 df-cofu 17920 df-fuco 48886 |
This theorem is referenced by: fuco11cl 48896 fucofunc 48926 |
Copyright terms: Public domain | W3C validator |