Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucof1 Structured version   Visualization version   GIF version

Theorem fucof1 49311
Description: The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fucofval.c (𝜑𝐶𝑇)
fucofval.d (𝜑𝐷𝑈)
fucofval.e (𝜑𝐸𝑉)
fuco1.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco1.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucof1 (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))

Proof of Theorem fucof1
StepHypRef Expression
1 rescofuf 49082 . 2 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
2 fucofval.c . . . . 5 (𝜑𝐶𝑇)
3 fucofval.d . . . . 5 (𝜑𝐷𝑈)
4 fucofval.e . . . . 5 (𝜑𝐸𝑉)
5 fuco1.o . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
6 fuco1.w . . . . 5 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
72, 3, 4, 5, 6fuco1 49310 . . . 4 (𝜑𝑂 = ( ∘func𝑊))
86reseq2d 5950 . . . 4 (𝜑 → ( ∘func𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
97, 8eqtrd 2764 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
109, 6feq12d 6676 . 2 (𝜑 → (𝑂:𝑊⟶(𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)))
111, 10mpbiri 258 1 (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  cres 5640  wf 6507  (class class class)co 7387   Func cfunc 17816  func ccofu 17818  F cfuco 49305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-fuco 49306
This theorem is referenced by:  fuco11cl  49316  fucofunc  49348
  Copyright terms: Public domain W3C validator