| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucof1 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) | 
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) | 
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) | 
| fuco1.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | 
| fuco1.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| Ref | Expression | 
|---|---|
| fucof1 | ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rescofuf 48877 | . 2 ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | |
| 2 | fucofval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 3 | fucofval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 4 | fucofval.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 5 | fuco1.o | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 6 | fuco1.w | . . . . 5 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 7 | 2, 3, 4, 5, 6 | fuco1 48976 | . . . 4 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) | 
| 8 | 6 | reseq2d 5979 | . . . 4 ⊢ (𝜑 → ( ∘func ↾ 𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 9 | 7, 8 | eqtrd 2769 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) | 
| 10 | 9, 6 | feq12d 6705 | . 2 ⊢ (𝜑 → (𝑂:𝑊⟶(𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))) | 
| 11 | 1, 10 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4614 × cxp 5665 ↾ cres 5669 ⟶wf 6538 (class class class)co 7414 Func cfunc 17871 ∘func ccofu 17873 ∘F cfuco 48971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-map 8851 df-ixp 8921 df-cat 17683 df-cid 17684 df-func 17875 df-cofu 17877 df-fuco 48972 | 
| This theorem is referenced by: fuco11cl 48982 fucofunc 49014 | 
| Copyright terms: Public domain | W3C validator |