| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucof1 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| fuco1.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco1.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| Ref | Expression |
|---|---|
| fucof1 | ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescofuf 49010 | . 2 ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | |
| 2 | fucofval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 3 | fucofval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 4 | fucofval.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 5 | fuco1.o | . . . . 5 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 6 | fuco1.w | . . . . 5 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 7 | 2, 3, 4, 5, 6 | fuco1 49216 | . . . 4 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) |
| 8 | 6 | reseq2d 5958 | . . . 4 ⊢ (𝜑 → ( ∘func ↾ 𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 9 | 7, 8 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))) |
| 10 | 9, 6 | feq12d 6683 | . 2 ⊢ (𝜑 → (𝑂:𝑊⟶(𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))) |
| 11 | 1, 10 | mpbiri 258 | 1 ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4603 × cxp 5644 ↾ cres 5648 ⟶wf 6515 (class class class)co 7394 Func cfunc 17822 ∘func ccofu 17824 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-fuco 49212 |
| This theorem is referenced by: fuco11cl 49222 fucofunc 49254 |
| Copyright terms: Public domain | W3C validator |