Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucof1 Structured version   Visualization version   GIF version

Theorem fucof1 49217
Description: The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fucofval.c (𝜑𝐶𝑇)
fucofval.d (𝜑𝐷𝑈)
fucofval.e (𝜑𝐸𝑉)
fuco1.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco1.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
Assertion
Ref Expression
fucof1 (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))

Proof of Theorem fucof1
StepHypRef Expression
1 rescofuf 49010 . 2 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
2 fucofval.c . . . . 5 (𝜑𝐶𝑇)
3 fucofval.d . . . . 5 (𝜑𝐷𝑈)
4 fucofval.e . . . . 5 (𝜑𝐸𝑉)
5 fuco1.o . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
6 fuco1.w . . . . 5 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
72, 3, 4, 5, 6fuco1 49216 . . . 4 (𝜑𝑂 = ( ∘func𝑊))
86reseq2d 5958 . . . 4 (𝜑 → ( ∘func𝑊) = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
97, 8eqtrd 2765 . . 3 (𝜑𝑂 = ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))))
109, 6feq12d 6683 . 2 (𝜑 → (𝑂:𝑊⟶(𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)))
111, 10mpbiri 258 1 (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603   × cxp 5644  cres 5648  wf 6515  (class class class)co 7394   Func cfunc 17822  func ccofu 17824  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-fuco 49212
This theorem is referenced by:  fuco11cl  49222  fucofunc  49254
  Copyright terms: Public domain W3C validator