Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23alem Structured version   Visualization version   GIF version

Theorem fuco23alem 49340
Description: The naturality property (nati 17920) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco23a.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco23a.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23a.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23alem.o · = (comp‘𝐸)
Assertion
Ref Expression
fuco23alem (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))

Proof of Theorem fuco23alem
StepHypRef Expression
1 eqid 2729 . 2 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2 fuco23a.b . 2 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
3 eqid 2729 . 2 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2729 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 fuco23alem.o . 2 · = (comp‘𝐸)
6 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2729 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco23a.a . . . . 5 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49213 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
106, 3, 9funcf1 17828 . . 3 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
11 fuco23a.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
1210, 11ffvelcdmd 7057 . 2 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
137, 8natrcl3 49214 . . . 4 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
146, 3, 13funcf1 17828 . . 3 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
1514, 11ffvelcdmd 7057 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
167, 8, 6, 4, 11natcl 17918 . 2 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
171, 2, 3, 4, 5, 12, 15, 16nati 17920 1 (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232   Nat cnat 17906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-func 17820  df-nat 17908
This theorem is referenced by:  fuco23a  49341  fucoco  49346
  Copyright terms: Public domain W3C validator