| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23alem | Structured version Visualization version GIF version | ||
| Description: The naturality property (nati 17920) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco23a.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco23a.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| fuco23a.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco23alem.o | ⊢ · = (comp‘𝐸) |
| Ref | Expression |
|---|---|
| fuco23alem | ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 2 | fuco23a.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 3 | eqid 2729 | . 2 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | eqid 2729 | . 2 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | fuco23alem.o | . 2 ⊢ · = (comp‘𝐸) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 8 | fuco23a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 9 | 7, 8 | natrcl2 49213 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 10 | 6, 3, 9 | funcf1 17828 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 11 | fuco23a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 12 | 10, 11 | ffvelcdmd 7057 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 13 | 7, 8 | natrcl3 49214 | . . . 4 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 14 | 6, 3, 13 | funcf1 17828 | . . 3 ⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
| 15 | 14, 11 | ffvelcdmd 7057 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝐷)) |
| 16 | 7, 8, 6, 4, 11 | natcl 17918 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))) |
| 17 | 1, 2, 3, 4, 5, 12, 15, 16 | nati 17920 | 1 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Nat cnat 17906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-func 17820 df-nat 17908 |
| This theorem is referenced by: fuco23a 49341 fucoco 49346 |
| Copyright terms: Public domain | W3C validator |