Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23alem Structured version   Visualization version   GIF version

Theorem fuco23alem 49382
Description: The naturality property (nati 17862) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco23a.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco23a.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23a.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23alem.o · = (comp‘𝐸)
Assertion
Ref Expression
fuco23alem (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))

Proof of Theorem fuco23alem
StepHypRef Expression
1 eqid 2731 . 2 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2 fuco23a.b . 2 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
3 eqid 2731 . 2 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2731 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 fuco23alem.o . 2 · = (comp‘𝐸)
6 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2731 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco23a.a . . . . 5 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49255 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
106, 3, 9funcf1 17770 . . 3 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
11 fuco23a.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
1210, 11ffvelcdmd 7018 . 2 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
137, 8natrcl3 49256 . . . 4 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
146, 3, 13funcf1 17770 . . 3 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
1514, 11ffvelcdmd 7018 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
167, 8, 6, 4, 11natcl 17860 . 2 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
171, 2, 3, 4, 5, 12, 15, 16nati 17862 1 (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4582  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  compcco 17170   Nat cnat 17848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-nat 17850
This theorem is referenced by:  fuco23a  49383  fucoco  49388
  Copyright terms: Public domain W3C validator