Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23alem Structured version   Visualization version   GIF version

Theorem fuco23alem 49246
Description: The naturality property (nati 17926) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco23a.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco23a.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23a.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23alem.o · = (comp‘𝐸)
Assertion
Ref Expression
fuco23alem (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))

Proof of Theorem fuco23alem
StepHypRef Expression
1 eqid 2730 . 2 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2 fuco23a.b . 2 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
3 eqid 2730 . 2 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2730 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 fuco23alem.o . 2 · = (comp‘𝐸)
6 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2730 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco23a.a . . . . 5 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49128 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
106, 3, 9funcf1 17834 . . 3 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
11 fuco23a.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
1210, 11ffvelcdmd 7064 . 2 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
137, 8natrcl3 49129 . . . 4 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
146, 3, 13funcf1 17834 . . 3 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
1514, 11ffvelcdmd 7064 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
167, 8, 6, 4, 11natcl 17924 . 2 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
171, 2, 3, 4, 5, 12, 15, 16nati 17926 1 (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603  cfv 6519  (class class class)co 7394  Basecbs 17185  Hom chom 17237  compcco 17238   Nat cnat 17912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-func 17826  df-nat 17914
This theorem is referenced by:  fuco23a  49247  fucoco  49252
  Copyright terms: Public domain W3C validator