![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23alem | Structured version Visualization version GIF version |
Description: The naturality property (nati 18019) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
Ref | Expression |
---|---|
fuco23a.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
fuco23a.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
fuco23a.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
fuco23alem.o | ⊢ · = (comp‘𝐸) |
Ref | Expression |
---|---|
fuco23alem | ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
2 | fuco23a.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
3 | eqid 2737 | . 2 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | eqid 2737 | . 2 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | fuco23alem.o | . 2 ⊢ · = (comp‘𝐸) | |
6 | eqid 2737 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | eqid 2737 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
8 | fuco23a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
9 | 7, 8 | natrcl2 48870 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | 6, 3, 9 | funcf1 17926 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
11 | fuco23a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
12 | 10, 11 | ffvelcdmd 7112 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
13 | 7, 8 | natrcl3 48871 | . . . 4 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
14 | 6, 3, 13 | funcf1 17926 | . . 3 ⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
15 | 14, 11 | ffvelcdmd 7112 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝐷)) |
16 | 7, 8, 6, 4, 11 | natcl 18017 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))) |
17 | 1, 2, 3, 4, 5, 12, 15, 16 | nati 18019 | 1 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 compcco 17319 Nat cnat 18005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-nat 18007 |
This theorem is referenced by: fuco23a 48919 fucoco 48924 |
Copyright terms: Public domain | W3C validator |