| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23alem | Structured version Visualization version GIF version | ||
| Description: The naturality property (nati 17862) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco23a.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco23a.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| fuco23a.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco23alem.o | ⊢ · = (comp‘𝐸) |
| Ref | Expression |
|---|---|
| fuco23alem | ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 2 | fuco23a.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 3 | eqid 2731 | . 2 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | eqid 2731 | . 2 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | fuco23alem.o | . 2 ⊢ · = (comp‘𝐸) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 8 | fuco23a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 9 | 7, 8 | natrcl2 49255 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 10 | 6, 3, 9 | funcf1 17770 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 11 | fuco23a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 12 | 10, 11 | ffvelcdmd 7018 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 13 | 7, 8 | natrcl3 49256 | . . . 4 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 14 | 6, 3, 13 | funcf1 17770 | . . 3 ⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
| 15 | 14, 11 | ffvelcdmd 7018 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝐷)) |
| 16 | 7, 8, 6, 4, 11 | natcl 17860 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝑀‘𝑋))) |
| 17 | 1, 2, 3, 4, 5, 12, 15, 16 | nati 17862 | 1 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 Nat cnat 17848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-nat 17850 |
| This theorem is referenced by: fuco23a 49383 fucoco 49388 |
| Copyright terms: Public domain | W3C validator |