Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23alem Structured version   Visualization version   GIF version

Theorem fuco23alem 49006
Description: The naturality property (nati 17975) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco23a.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco23a.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23a.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23alem.o · = (comp‘𝐸)
Assertion
Ref Expression
fuco23alem (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))

Proof of Theorem fuco23alem
StepHypRef Expression
1 eqid 2734 . 2 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2 fuco23a.b . 2 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
3 eqid 2734 . 2 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2734 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 fuco23alem.o . 2 · = (comp‘𝐸)
6 eqid 2734 . . . 4 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2734 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco23a.a . . . . 5 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 48905 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
106, 3, 9funcf1 17883 . . 3 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
11 fuco23a.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
1210, 11ffvelcdmd 7086 . 2 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
137, 8natrcl3 48906 . . . 4 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
146, 3, 13funcf1 17883 . . 3 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
1514, 11ffvelcdmd 7086 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝐷))
167, 8, 6, 4, 11natcl 17973 . 2 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝑀𝑋)))
171, 2, 3, 4, 5, 12, 15, 16nati 17975 1 (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4614  cfv 6542  (class class class)co 7414  Basecbs 17230  Hom chom 17285  compcco 17286   Nat cnat 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-func 17875  df-nat 17963
This theorem is referenced by:  fuco23a  49007  fucoco  49012
  Copyright terms: Public domain W3C validator