Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem1 Structured version   Visualization version   GIF version

Theorem fucocolem1 49342
Description: Lemma for fucoco 49346. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucocolem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fucocolem1.p (𝜑𝑃 ∈ (𝐷 Func 𝐸))
fucocolem1.q (𝜑𝑄 ∈ (𝐶 Func 𝐷))
fucocolem1.a (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
fucocolem1.b (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
Assertion
Ref Expression
fucocolem1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))

Proof of Theorem fucocolem1
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2729 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2729 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 fucoco.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
5 eqid 2729 . . . . . . . 8 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
65natrcl 17915 . . . . . . 7 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
87simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
98func1st2nd 49065 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
109funcrcl3 49069 . . 3 (𝜑𝐸 ∈ Cat)
11 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
1211, 1, 9funcf1 17828 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoco.s . . . . . . . . 9 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
15 eqid 2729 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1615natrcl 17915 . . . . . . . . 9 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1714, 16syl 17 . . . . . . . 8 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
1918func1st2nd 49065 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2013, 11, 19funcf1 17828 . . . . 5 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
21 fucocolem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
2220, 21ffvelcdmd 7057 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (Base‘𝐷))
2312, 22ffvelcdmd 7057 . . 3 (𝜑 → ((1st𝐹)‘((1st𝐺)‘𝑋)) ∈ (Base‘𝐸))
24 fucocolem1.p . . . . . 6 (𝜑𝑃 ∈ (𝐷 Func 𝐸))
2524func1st2nd 49065 . . . . 5 (𝜑 → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
2611, 1, 25funcf1 17828 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐷)⟶(Base‘𝐸))
27 fucocolem1.q . . . . . . 7 (𝜑𝑄 ∈ (𝐶 Func 𝐷))
2827func1st2nd 49065 . . . . . 6 (𝜑 → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
2913, 11, 28funcf1 17828 . . . . 5 (𝜑 → (1st𝑄):(Base‘𝐶)⟶(Base‘𝐷))
3029, 21ffvelcdmd 7057 . . . 4 (𝜑 → ((1st𝑄)‘𝑋) ∈ (Base‘𝐷))
3126, 30ffvelcdmd 7057 . . 3 (𝜑 → ((1st𝑃)‘((1st𝑄)‘𝑋)) ∈ (Base‘𝐸))
327simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3332func1st2nd 49065 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
3411, 1, 33funcf1 17828 . . . 4 (𝜑 → (1st𝐾):(Base‘𝐷)⟶(Base‘𝐸))
35 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
3615natrcl 17915 . . . . . . . . 9 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3837simprd 495 . . . . . . 7 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
3938func1st2nd 49065 . . . . . 6 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4013, 11, 39funcf1 17828 . . . . 5 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4140, 21ffvelcdmd 7057 . . . 4 (𝜑 → ((1st𝑁)‘𝑋) ∈ (Base‘𝐷))
4234, 41ffvelcdmd 7057 . . 3 (𝜑 → ((1st𝐾)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
4317simprd 495 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
4443func1st2nd 49065 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
4513, 11, 44funcf1 17828 . . . . . 6 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
4645, 21ffvelcdmd 7057 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (Base‘𝐷))
4712, 46ffvelcdmd 7057 . . . 4 (𝜑 → ((1st𝐹)‘((1st𝐿)‘𝑋)) ∈ (Base‘𝐸))
48 eqid 2729 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
4911, 48, 2, 9, 22, 46funcf2 17830 . . . . 5 (𝜑 → (((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋)):(((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋))⟶(((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
5015, 14nat1st2nd 17916 . . . . . 6 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
5115, 50, 13, 48, 21natcl 17918 . . . . 5 (𝜑 → (𝑆𝑋) ∈ (((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋)))
5249, 51ffvelcdmd 7057 . . . 4 (𝜑 → ((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
53 fucocolem1.b . . . 4 (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
541, 2, 3, 10, 23, 47, 31, 52, 53catcocl 17646 . . 3 (𝜑 → (𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
55 fucocolem1.a . . 3 (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
56 fucoco.u . . . . . . . 8 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
575natrcl 17915 . . . . . . . 8 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5958simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
6059func1st2nd 49065 . . . . 5 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
6111, 1, 60funcf1 17828 . . . 4 (𝜑 → (1st𝑀):(Base‘𝐷)⟶(Base‘𝐸))
6261, 41ffvelcdmd 7057 . . 3 (𝜑 → ((1st𝑀)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
635, 56nat1st2nd 17916 . . . 4 (𝜑𝑈 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑀), (2nd𝑀)⟩))
645, 63, 11, 2, 41natcl 17918 . . 3 (𝜑 → (𝑈‘((1st𝑁)‘𝑋)) ∈ (((1st𝐾)‘((1st𝑁)‘𝑋))(Hom ‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋))))
651, 2, 3, 10, 23, 31, 42, 54, 55, 62, 64catass 17647 . 2 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
661, 2, 3, 10, 23, 47, 31, 52, 53, 42, 55catass 17647 . . 3 (𝜑 → ((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) = (𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
6766oveq2d 7403 . 2 (𝜑 → ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
6865, 67eqtr4d 2767 1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   Nat cnat 17906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-func 17820  df-nat 17908
This theorem is referenced by:  fucocolem3  49344  fucoco  49346
  Copyright terms: Public domain W3C validator