Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem1 Structured version   Visualization version   GIF version

Theorem fucocolem1 49384
Description: Lemma for fucoco 49388. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucocolem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fucocolem1.p (𝜑𝑃 ∈ (𝐷 Func 𝐸))
fucocolem1.q (𝜑𝑄 ∈ (𝐶 Func 𝐷))
fucocolem1.a (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
fucocolem1.b (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
Assertion
Ref Expression
fucocolem1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))

Proof of Theorem fucocolem1
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2731 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2731 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 fucoco.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
5 eqid 2731 . . . . . . . 8 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
65natrcl 17857 . . . . . . 7 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
87simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
98func1st2nd 49107 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
109funcrcl3 49111 . . 3 (𝜑𝐸 ∈ Cat)
11 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
1211, 1, 9funcf1 17770 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2731 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoco.s . . . . . . . . 9 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
15 eqid 2731 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1615natrcl 17857 . . . . . . . . 9 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1714, 16syl 17 . . . . . . . 8 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
1918func1st2nd 49107 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2013, 11, 19funcf1 17770 . . . . 5 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
21 fucocolem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
2220, 21ffvelcdmd 7018 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (Base‘𝐷))
2312, 22ffvelcdmd 7018 . . 3 (𝜑 → ((1st𝐹)‘((1st𝐺)‘𝑋)) ∈ (Base‘𝐸))
24 fucocolem1.p . . . . . 6 (𝜑𝑃 ∈ (𝐷 Func 𝐸))
2524func1st2nd 49107 . . . . 5 (𝜑 → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
2611, 1, 25funcf1 17770 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐷)⟶(Base‘𝐸))
27 fucocolem1.q . . . . . . 7 (𝜑𝑄 ∈ (𝐶 Func 𝐷))
2827func1st2nd 49107 . . . . . 6 (𝜑 → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
2913, 11, 28funcf1 17770 . . . . 5 (𝜑 → (1st𝑄):(Base‘𝐶)⟶(Base‘𝐷))
3029, 21ffvelcdmd 7018 . . . 4 (𝜑 → ((1st𝑄)‘𝑋) ∈ (Base‘𝐷))
3126, 30ffvelcdmd 7018 . . 3 (𝜑 → ((1st𝑃)‘((1st𝑄)‘𝑋)) ∈ (Base‘𝐸))
327simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3332func1st2nd 49107 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
3411, 1, 33funcf1 17770 . . . 4 (𝜑 → (1st𝐾):(Base‘𝐷)⟶(Base‘𝐸))
35 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
3615natrcl 17857 . . . . . . . . 9 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3837simprd 495 . . . . . . 7 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
3938func1st2nd 49107 . . . . . 6 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4013, 11, 39funcf1 17770 . . . . 5 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4140, 21ffvelcdmd 7018 . . . 4 (𝜑 → ((1st𝑁)‘𝑋) ∈ (Base‘𝐷))
4234, 41ffvelcdmd 7018 . . 3 (𝜑 → ((1st𝐾)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
4317simprd 495 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
4443func1st2nd 49107 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
4513, 11, 44funcf1 17770 . . . . . 6 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
4645, 21ffvelcdmd 7018 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (Base‘𝐷))
4712, 46ffvelcdmd 7018 . . . 4 (𝜑 → ((1st𝐹)‘((1st𝐿)‘𝑋)) ∈ (Base‘𝐸))
48 eqid 2731 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
4911, 48, 2, 9, 22, 46funcf2 17772 . . . . 5 (𝜑 → (((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋)):(((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋))⟶(((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
5015, 14nat1st2nd 17858 . . . . . 6 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
5115, 50, 13, 48, 21natcl 17860 . . . . 5 (𝜑 → (𝑆𝑋) ∈ (((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋)))
5249, 51ffvelcdmd 7018 . . . 4 (𝜑 → ((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
53 fucocolem1.b . . . 4 (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
541, 2, 3, 10, 23, 47, 31, 52, 53catcocl 17588 . . 3 (𝜑 → (𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
55 fucocolem1.a . . 3 (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
56 fucoco.u . . . . . . . 8 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
575natrcl 17857 . . . . . . . 8 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5958simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
6059func1st2nd 49107 . . . . 5 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
6111, 1, 60funcf1 17770 . . . 4 (𝜑 → (1st𝑀):(Base‘𝐷)⟶(Base‘𝐸))
6261, 41ffvelcdmd 7018 . . 3 (𝜑 → ((1st𝑀)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
635, 56nat1st2nd 17858 . . . 4 (𝜑𝑈 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑀), (2nd𝑀)⟩))
645, 63, 11, 2, 41natcl 17860 . . 3 (𝜑 → (𝑈‘((1st𝑁)‘𝑋)) ∈ (((1st𝐾)‘((1st𝑁)‘𝑋))(Hom ‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋))))
651, 2, 3, 10, 23, 31, 42, 54, 55, 62, 64catass 17589 . 2 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
661, 2, 3, 10, 23, 47, 31, 52, 53, 42, 55catass 17589 . . 3 (𝜑 → ((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) = (𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
6766oveq2d 7362 . 2 (𝜑 → ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
6865, 67eqtr4d 2769 1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   Nat cnat 17848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-func 17762  df-nat 17850
This theorem is referenced by:  fucocolem3  49386  fucoco  49388
  Copyright terms: Public domain W3C validator