Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem1 Structured version   Visualization version   GIF version

Theorem fucocolem1 49008
Description: Lemma for fucoco 49012. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucocolem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fucocolem1.p (𝜑𝑃 ∈ (𝐷 Func 𝐸))
fucocolem1.q (𝜑𝑄 ∈ (𝐶 Func 𝐷))
fucocolem1.a (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
fucocolem1.b (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
Assertion
Ref Expression
fucocolem1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))

Proof of Theorem fucocolem1
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2734 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2734 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 relfunc 17879 . . . . 5 Rel (𝐷 Func 𝐸)
5 fucoco.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
6 eqid 2734 . . . . . . . 8 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
76natrcl 17970 . . . . . . 7 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
85, 7syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
98simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
10 1st2ndbr 8050 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
114, 9, 10sylancr 587 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
1211funcrcl3 48866 . . 3 (𝜑𝐸 ∈ Cat)
13 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
1413, 1, 11funcf1 17883 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐷)⟶(Base‘𝐸))
15 eqid 2734 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
16 relfunc 17879 . . . . . . 7 Rel (𝐶 Func 𝐷)
17 fucoco.s . . . . . . . . 9 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
18 eqid 2734 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1918natrcl 17970 . . . . . . . . 9 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2120simpld 494 . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
22 1st2ndbr 8050 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2316, 21, 22sylancr 587 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2415, 13, 23funcf1 17883 . . . . 5 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
25 fucocolem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
2624, 25ffvelcdmd 7086 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (Base‘𝐷))
2714, 26ffvelcdmd 7086 . . 3 (𝜑 → ((1st𝐹)‘((1st𝐺)‘𝑋)) ∈ (Base‘𝐸))
28 fucocolem1.p . . . . . 6 (𝜑𝑃 ∈ (𝐷 Func 𝐸))
29 1st2ndbr 8050 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝑃 ∈ (𝐷 Func 𝐸)) → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
304, 28, 29sylancr 587 . . . . 5 (𝜑 → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
3113, 1, 30funcf1 17883 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐷)⟶(Base‘𝐸))
32 fucocolem1.q . . . . . . 7 (𝜑𝑄 ∈ (𝐶 Func 𝐷))
33 1st2ndbr 8050 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝑄 ∈ (𝐶 Func 𝐷)) → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
3416, 32, 33sylancr 587 . . . . . 6 (𝜑 → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
3515, 13, 34funcf1 17883 . . . . 5 (𝜑 → (1st𝑄):(Base‘𝐶)⟶(Base‘𝐷))
3635, 25ffvelcdmd 7086 . . . 4 (𝜑 → ((1st𝑄)‘𝑋) ∈ (Base‘𝐷))
3731, 36ffvelcdmd 7086 . . 3 (𝜑 → ((1st𝑃)‘((1st𝑄)‘𝑋)) ∈ (Base‘𝐸))
388simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
39 1st2ndbr 8050 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
404, 38, 39sylancr 587 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
4113, 1, 40funcf1 17883 . . . 4 (𝜑 → (1st𝐾):(Base‘𝐷)⟶(Base‘𝐸))
42 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
4318natrcl 17970 . . . . . . . . 9 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
4442, 43syl 17 . . . . . . . 8 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
4544simprd 495 . . . . . . 7 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
46 1st2ndbr 8050 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4716, 45, 46sylancr 587 . . . . . 6 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4815, 13, 47funcf1 17883 . . . . 5 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4948, 25ffvelcdmd 7086 . . . 4 (𝜑 → ((1st𝑁)‘𝑋) ∈ (Base‘𝐷))
5041, 49ffvelcdmd 7086 . . 3 (𝜑 → ((1st𝐾)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
5120simprd 495 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
52 1st2ndbr 8050 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5316, 51, 52sylancr 587 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5415, 13, 53funcf1 17883 . . . . . 6 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
5554, 25ffvelcdmd 7086 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (Base‘𝐷))
5614, 55ffvelcdmd 7086 . . . 4 (𝜑 → ((1st𝐹)‘((1st𝐿)‘𝑋)) ∈ (Base‘𝐸))
57 eqid 2734 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
5813, 57, 2, 11, 26, 55funcf2 17885 . . . . 5 (𝜑 → (((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋)):(((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋))⟶(((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
5918, 17nat1st2nd 17971 . . . . . 6 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
6018, 59, 15, 57, 25natcl 17973 . . . . 5 (𝜑 → (𝑆𝑋) ∈ (((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋)))
6158, 60ffvelcdmd 7086 . . . 4 (𝜑 → ((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
62 fucocolem1.b . . . 4 (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
631, 2, 3, 12, 27, 56, 37, 61, 62catcocl 17700 . . 3 (𝜑 → (𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
64 fucocolem1.a . . 3 (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
65 fucoco.u . . . . . . . 8 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
666natrcl 17970 . . . . . . . 8 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
6765, 66syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
6867simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
69 1st2ndbr 8050 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
704, 68, 69sylancr 587 . . . . 5 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
7113, 1, 70funcf1 17883 . . . 4 (𝜑 → (1st𝑀):(Base‘𝐷)⟶(Base‘𝐸))
7271, 49ffvelcdmd 7086 . . 3 (𝜑 → ((1st𝑀)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
736, 65nat1st2nd 17971 . . . 4 (𝜑𝑈 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑀), (2nd𝑀)⟩))
746, 73, 13, 2, 49natcl 17973 . . 3 (𝜑 → (𝑈‘((1st𝑁)‘𝑋)) ∈ (((1st𝐾)‘((1st𝑁)‘𝑋))(Hom ‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋))))
751, 2, 3, 12, 27, 37, 50, 63, 64, 72, 74catass 17701 . 2 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
761, 2, 3, 12, 27, 56, 37, 61, 62, 50, 64catass 17701 . . 3 (𝜑 → ((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) = (𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
7776oveq2d 7430 . 2 (𝜑 → ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
7875, 77eqtr4d 2772 1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4614   class class class wbr 5125  Rel wrel 5672  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871   Nat cnat 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-cat 17683  df-func 17875  df-nat 17963
This theorem is referenced by:  fucocolem3  49010  fucoco  49012
  Copyright terms: Public domain W3C validator