Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem1 Structured version   Visualization version   GIF version

Theorem fucocolem1 48920
Description: Lemma for fucoco 48924. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucocolem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fucocolem1.p (𝜑𝑃 ∈ (𝐷 Func 𝐸))
fucocolem1.q (𝜑𝑄 ∈ (𝐶 Func 𝐷))
fucocolem1.a (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
fucocolem1.b (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
Assertion
Ref Expression
fucocolem1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))

Proof of Theorem fucocolem1
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2737 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2737 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 relfunc 17922 . . . . 5 Rel (𝐷 Func 𝐸)
5 fucoco.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
6 eqid 2737 . . . . . . . 8 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
76natrcl 18014 . . . . . . 7 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
85, 7syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
98simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
10 1st2ndbr 8075 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
114, 9, 10sylancr 587 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
1211funcrcl3 48838 . . 3 (𝜑𝐸 ∈ Cat)
13 eqid 2737 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
1413, 1, 11funcf1 17926 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐷)⟶(Base‘𝐸))
15 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
16 relfunc 17922 . . . . . . 7 Rel (𝐶 Func 𝐷)
17 fucoco.s . . . . . . . . 9 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
18 eqid 2737 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1918natrcl 18014 . . . . . . . . 9 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2120simpld 494 . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
22 1st2ndbr 8075 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2316, 21, 22sylancr 587 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2415, 13, 23funcf1 17926 . . . . 5 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
25 fucocolem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
2624, 25ffvelcdmd 7112 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (Base‘𝐷))
2714, 26ffvelcdmd 7112 . . 3 (𝜑 → ((1st𝐹)‘((1st𝐺)‘𝑋)) ∈ (Base‘𝐸))
28 fucocolem1.p . . . . . 6 (𝜑𝑃 ∈ (𝐷 Func 𝐸))
29 1st2ndbr 8075 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝑃 ∈ (𝐷 Func 𝐸)) → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
304, 28, 29sylancr 587 . . . . 5 (𝜑 → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
3113, 1, 30funcf1 17926 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐷)⟶(Base‘𝐸))
32 fucocolem1.q . . . . . . 7 (𝜑𝑄 ∈ (𝐶 Func 𝐷))
33 1st2ndbr 8075 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝑄 ∈ (𝐶 Func 𝐷)) → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
3416, 32, 33sylancr 587 . . . . . 6 (𝜑 → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
3515, 13, 34funcf1 17926 . . . . 5 (𝜑 → (1st𝑄):(Base‘𝐶)⟶(Base‘𝐷))
3635, 25ffvelcdmd 7112 . . . 4 (𝜑 → ((1st𝑄)‘𝑋) ∈ (Base‘𝐷))
3731, 36ffvelcdmd 7112 . . 3 (𝜑 → ((1st𝑃)‘((1st𝑄)‘𝑋)) ∈ (Base‘𝐸))
388simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
39 1st2ndbr 8075 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
404, 38, 39sylancr 587 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
4113, 1, 40funcf1 17926 . . . 4 (𝜑 → (1st𝐾):(Base‘𝐷)⟶(Base‘𝐸))
42 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
4318natrcl 18014 . . . . . . . . 9 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
4442, 43syl 17 . . . . . . . 8 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
4544simprd 495 . . . . . . 7 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
46 1st2ndbr 8075 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4716, 45, 46sylancr 587 . . . . . 6 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4815, 13, 47funcf1 17926 . . . . 5 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4948, 25ffvelcdmd 7112 . . . 4 (𝜑 → ((1st𝑁)‘𝑋) ∈ (Base‘𝐷))
5041, 49ffvelcdmd 7112 . . 3 (𝜑 → ((1st𝐾)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
5120simprd 495 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
52 1st2ndbr 8075 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5316, 51, 52sylancr 587 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5415, 13, 53funcf1 17926 . . . . . 6 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
5554, 25ffvelcdmd 7112 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (Base‘𝐷))
5614, 55ffvelcdmd 7112 . . . 4 (𝜑 → ((1st𝐹)‘((1st𝐿)‘𝑋)) ∈ (Base‘𝐸))
57 eqid 2737 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
5813, 57, 2, 11, 26, 55funcf2 17928 . . . . 5 (𝜑 → (((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋)):(((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋))⟶(((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
5918, 17nat1st2nd 18015 . . . . . 6 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
6018, 59, 15, 57, 25natcl 18017 . . . . 5 (𝜑 → (𝑆𝑋) ∈ (((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋)))
6158, 60ffvelcdmd 7112 . . . 4 (𝜑 → ((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
62 fucocolem1.b . . . 4 (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
631, 2, 3, 12, 27, 56, 37, 61, 62catcocl 17739 . . 3 (𝜑 → (𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
64 fucocolem1.a . . 3 (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
65 fucoco.u . . . . . . . 8 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
666natrcl 18014 . . . . . . . 8 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
6765, 66syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
6867simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
69 1st2ndbr 8075 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
704, 68, 69sylancr 587 . . . . 5 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
7113, 1, 70funcf1 17926 . . . 4 (𝜑 → (1st𝑀):(Base‘𝐷)⟶(Base‘𝐸))
7271, 49ffvelcdmd 7112 . . 3 (𝜑 → ((1st𝑀)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
736, 65nat1st2nd 18015 . . . 4 (𝜑𝑈 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑀), (2nd𝑀)⟩))
746, 73, 13, 2, 49natcl 18017 . . 3 (𝜑 → (𝑈‘((1st𝑁)‘𝑋)) ∈ (((1st𝐾)‘((1st𝑁)‘𝑋))(Hom ‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋))))
751, 2, 3, 12, 27, 37, 50, 63, 64, 72, 74catass 17740 . 2 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
761, 2, 3, 12, 27, 56, 37, 61, 62, 50, 64catass 17740 . . 3 (𝜑 → ((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) = (𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
7776oveq2d 7454 . 2 (𝜑 → ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
7875, 77eqtr4d 2780 1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151  Rel wrel 5698  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Basecbs 17254  Hom chom 17318  compcco 17319   Func cfunc 17914   Nat cnat 18005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-cat 17722  df-func 17918  df-nat 18007
This theorem is referenced by:  fucocolem3  48922  fucoco  48924
  Copyright terms: Public domain W3C validator