Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem1 Structured version   Visualization version   GIF version

Theorem fucocolem1 49478
Description: Lemma for fucoco 49482. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucocolem1.x (𝜑𝑋 ∈ (Base‘𝐶))
fucocolem1.p (𝜑𝑃 ∈ (𝐷 Func 𝐸))
fucocolem1.q (𝜑𝑄 ∈ (𝐶 Func 𝐷))
fucocolem1.a (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
fucocolem1.b (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
Assertion
Ref Expression
fucocolem1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))

Proof of Theorem fucocolem1
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝐸) = (Base‘𝐸)
2 eqid 2733 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
3 eqid 2733 . . 3 (comp‘𝐸) = (comp‘𝐸)
4 fucoco.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
5 eqid 2733 . . . . . . . 8 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
65natrcl 17862 . . . . . . 7 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
87simpld 494 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
98func1st2nd 49201 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
109funcrcl3 49205 . . 3 (𝜑𝐸 ∈ Cat)
11 eqid 2733 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
1211, 1, 9funcf1 17775 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐷)⟶(Base‘𝐸))
13 eqid 2733 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 fucoco.s . . . . . . . . 9 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
15 eqid 2733 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
1615natrcl 17862 . . . . . . . . 9 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1714, 16syl 17 . . . . . . . 8 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
1817simpld 494 . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
1918func1st2nd 49201 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2013, 11, 19funcf1 17775 . . . . 5 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
21 fucocolem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
2220, 21ffvelcdmd 7024 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (Base‘𝐷))
2312, 22ffvelcdmd 7024 . . 3 (𝜑 → ((1st𝐹)‘((1st𝐺)‘𝑋)) ∈ (Base‘𝐸))
24 fucocolem1.p . . . . . 6 (𝜑𝑃 ∈ (𝐷 Func 𝐸))
2524func1st2nd 49201 . . . . 5 (𝜑 → (1st𝑃)(𝐷 Func 𝐸)(2nd𝑃))
2611, 1, 25funcf1 17775 . . . 4 (𝜑 → (1st𝑃):(Base‘𝐷)⟶(Base‘𝐸))
27 fucocolem1.q . . . . . . 7 (𝜑𝑄 ∈ (𝐶 Func 𝐷))
2827func1st2nd 49201 . . . . . 6 (𝜑 → (1st𝑄)(𝐶 Func 𝐷)(2nd𝑄))
2913, 11, 28funcf1 17775 . . . . 5 (𝜑 → (1st𝑄):(Base‘𝐶)⟶(Base‘𝐷))
3029, 21ffvelcdmd 7024 . . . 4 (𝜑 → ((1st𝑄)‘𝑋) ∈ (Base‘𝐷))
3126, 30ffvelcdmd 7024 . . 3 (𝜑 → ((1st𝑃)‘((1st𝑄)‘𝑋)) ∈ (Base‘𝐸))
327simprd 495 . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3332func1st2nd 49201 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
3411, 1, 33funcf1 17775 . . . 4 (𝜑 → (1st𝐾):(Base‘𝐷)⟶(Base‘𝐸))
35 fucoco.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
3615natrcl 17862 . . . . . . . . 9 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3837simprd 495 . . . . . . 7 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
3938func1st2nd 49201 . . . . . 6 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
4013, 11, 39funcf1 17775 . . . . 5 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4140, 21ffvelcdmd 7024 . . . 4 (𝜑 → ((1st𝑁)‘𝑋) ∈ (Base‘𝐷))
4234, 41ffvelcdmd 7024 . . 3 (𝜑 → ((1st𝐾)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
4317simprd 495 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
4443func1st2nd 49201 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
4513, 11, 44funcf1 17775 . . . . . 6 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
4645, 21ffvelcdmd 7024 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (Base‘𝐷))
4712, 46ffvelcdmd 7024 . . . 4 (𝜑 → ((1st𝐹)‘((1st𝐿)‘𝑋)) ∈ (Base‘𝐸))
48 eqid 2733 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
4911, 48, 2, 9, 22, 46funcf2 17777 . . . . 5 (𝜑 → (((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋)):(((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋))⟶(((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
5015, 14nat1st2nd 17863 . . . . . 6 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩(𝐶 Nat 𝐷)⟨(1st𝐿), (2nd𝐿)⟩))
5115, 50, 13, 48, 21natcl 17865 . . . . 5 (𝜑 → (𝑆𝑋) ∈ (((1st𝐺)‘𝑋)(Hom ‘𝐷)((1st𝐿)‘𝑋)))
5249, 51ffvelcdmd 7024 . . . 4 (𝜑 → ((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝐹)‘((1st𝐿)‘𝑋))))
53 fucocolem1.b . . . 4 (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
541, 2, 3, 10, 23, 47, 31, 52, 53catcocl 17593 . . 3 (𝜑 → (𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) ∈ (((1st𝐹)‘((1st𝐺)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))
55 fucocolem1.a . . 3 (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))
56 fucoco.u . . . . . . . 8 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
575natrcl 17862 . . . . . . . 8 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
5958simprd 495 . . . . . 6 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
6059func1st2nd 49201 . . . . 5 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
6111, 1, 60funcf1 17775 . . . 4 (𝜑 → (1st𝑀):(Base‘𝐷)⟶(Base‘𝐸))
6261, 41ffvelcdmd 7024 . . 3 (𝜑 → ((1st𝑀)‘((1st𝑁)‘𝑋)) ∈ (Base‘𝐸))
635, 56nat1st2nd 17863 . . . 4 (𝜑𝑈 ∈ (⟨(1st𝐾), (2nd𝐾)⟩(𝐷 Nat 𝐸)⟨(1st𝑀), (2nd𝑀)⟩))
645, 63, 11, 2, 41natcl 17865 . . 3 (𝜑 → (𝑈‘((1st𝑁)‘𝑋)) ∈ (((1st𝐾)‘((1st𝑁)‘𝑋))(Hom ‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋))))
651, 2, 3, 10, 23, 31, 42, 54, 55, 62, 64catass 17594 . 2 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
661, 2, 3, 10, 23, 47, 31, 52, 53, 42, 55catass 17594 . . 3 (𝜑 → ((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))) = (𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
6766oveq2d 7368 . 2 (𝜑 → ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐴(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋))))))
6865, 67eqtr4d 2771 1 (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  Hom chom 17174  compcco 17175   Func cfunc 17763   Nat cnat 17853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-func 17767  df-nat 17855
This theorem is referenced by:  fucocolem3  49480  fucoco  49482
  Copyright terms: Public domain W3C validator