Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23 Structured version   Visualization version   GIF version

Theorem fuco23 49466
Description: The morphism part of the functor composition bifunctor. See also fuco23a 49477. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco22.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco22.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23.o (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
Assertion
Ref Expression
fuco23 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))

Proof of Theorem fuco23
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fuco22.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco22.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
3 fuco22.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
4 fuco22.a . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
5 fuco22.b . . 3 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
61, 2, 3, 4, 5fuco22 49464 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
7 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6832 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98fveq2d 6832 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑋)))
107fveq2d 6832 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑀𝑥) = (𝑀𝑋))
1110fveq2d 6832 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝑀𝑥)) = (𝐾‘(𝑀𝑋)))
129, 11opeq12d 4832 . . . . 5 ((𝜑𝑥 = 𝑋) → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩ = ⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩)
1310fveq2d 6832 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑅‘(𝑀𝑥)) = (𝑅‘(𝑀𝑋)))
1412, 13oveq12d 7370 . . . 4 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
15 fuco23.o . . . . 5 (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1615adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1714, 16eqtr4d 2771 . . 3 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = )
1810fveq2d 6832 . . 3 ((𝜑𝑥 = 𝑋) → (𝐵‘(𝑀𝑥)) = (𝐵‘(𝑀𝑋)))
198, 10oveq12d 7370 . . . 4 ((𝜑𝑥 = 𝑋) → ((𝐹𝑥)𝐿(𝑀𝑥)) = ((𝐹𝑋)𝐿(𝑀𝑋)))
207fveq2d 6832 . . . 4 ((𝜑𝑥 = 𝑋) → (𝐴𝑥) = (𝐴𝑋))
2119, 20fveq12d 6835 . . 3 ((𝜑𝑥 = 𝑋) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) = (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))
2217, 18, 21oveq123d 7373 . 2 ((𝜑𝑥 = 𝑋) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
23 fuco23.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
24 ovexd 7387 . 2 (𝜑 → ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) ∈ V)
256, 22, 23, 24fvmptd 6942 1 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cfv 6486  (class class class)co 7352  Basecbs 17122  compcco 17175   Nat cnat 17853  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-ixp 8828  df-func 17767  df-cofu 17769  df-nat 17855  df-fuco 49442
This theorem is referenced by:  fuco22natlem3  49469  fuco22natlem  49470  fuco23a  49477
  Copyright terms: Public domain W3C validator