| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. See also fuco23a 49247. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| fuco23.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco23.o | ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| Ref | Expression |
|---|---|
| fuco23 | ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 3 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 4 | fuco22.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 5 | fuco22.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 6 | 1, 2, 3, 4, 5 | fuco22 49234 | . 2 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| 7 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 8 | 7 | fveq2d 6869 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 9 | 8 | fveq2d 6869 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑋))) |
| 10 | 7 | fveq2d 6869 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑀‘𝑥) = (𝑀‘𝑋)) |
| 11 | 10 | fveq2d 6869 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝑀‘𝑥)) = (𝐾‘(𝑀‘𝑋))) |
| 12 | 9, 11 | opeq12d 4853 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉) |
| 13 | 10 | fveq2d 6869 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑅‘(𝑀‘𝑥)) = (𝑅‘(𝑀‘𝑋))) |
| 14 | 12, 13 | oveq12d 7412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| 15 | fuco23.o | . . . . 5 ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| 17 | 14, 16 | eqtr4d 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = ∗ ) |
| 18 | 10 | fveq2d 6869 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐵‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑋))) |
| 19 | 8, 10 | oveq12d 7412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝐿(𝑀‘𝑥)) = ((𝐹‘𝑋)𝐿(𝑀‘𝑋))) |
| 20 | 7 | fveq2d 6869 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐴‘𝑋)) |
| 21 | 19, 20 | fveq12d 6872 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)) = (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) |
| 22 | 17, 18, 21 | oveq123d 7415 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| 23 | fuco23.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 24 | ovexd 7429 | . 2 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) ∈ V) | |
| 25 | 6, 22, 23, 24 | fvmptd 6982 | 1 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 〈cop 4603 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 compcco 17238 Nat cnat 17912 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-ixp 8875 df-func 17826 df-cofu 17828 df-nat 17914 df-fuco 49212 |
| This theorem is referenced by: fuco22natlem3 49239 fuco22natlem 49240 fuco23a 49247 |
| Copyright terms: Public domain | W3C validator |