Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23 Structured version   Visualization version   GIF version

Theorem fuco23 49372
Description: The morphism part of the functor composition bifunctor. See also fuco23a 49383. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco22.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco22.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23.o (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
Assertion
Ref Expression
fuco23 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))

Proof of Theorem fuco23
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fuco22.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco22.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
3 fuco22.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
4 fuco22.a . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
5 fuco22.b . . 3 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
61, 2, 3, 4, 5fuco22 49370 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
7 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6826 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98fveq2d 6826 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑋)))
107fveq2d 6826 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑀𝑥) = (𝑀𝑋))
1110fveq2d 6826 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝑀𝑥)) = (𝐾‘(𝑀𝑋)))
129, 11opeq12d 4833 . . . . 5 ((𝜑𝑥 = 𝑋) → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩ = ⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩)
1310fveq2d 6826 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑅‘(𝑀𝑥)) = (𝑅‘(𝑀𝑋)))
1412, 13oveq12d 7364 . . . 4 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
15 fuco23.o . . . . 5 (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1615adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1714, 16eqtr4d 2769 . . 3 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = )
1810fveq2d 6826 . . 3 ((𝜑𝑥 = 𝑋) → (𝐵‘(𝑀𝑥)) = (𝐵‘(𝑀𝑋)))
198, 10oveq12d 7364 . . . 4 ((𝜑𝑥 = 𝑋) → ((𝐹𝑥)𝐿(𝑀𝑥)) = ((𝐹𝑋)𝐿(𝑀𝑋)))
207fveq2d 6826 . . . 4 ((𝜑𝑥 = 𝑋) → (𝐴𝑥) = (𝐴𝑋))
2119, 20fveq12d 6829 . . 3 ((𝜑𝑥 = 𝑋) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) = (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))
2217, 18, 21oveq123d 7367 . 2 ((𝜑𝑥 = 𝑋) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
23 fuco23.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
24 ovexd 7381 . 2 (𝜑 → ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) ∈ V)
256, 22, 23, 24fvmptd 6936 1 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cfv 6481  (class class class)co 7346  Basecbs 17117  compcco 17170   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-func 17762  df-cofu 17764  df-nat 17850  df-fuco 49348
This theorem is referenced by:  fuco22natlem3  49375  fuco22natlem  49376  fuco23a  49383
  Copyright terms: Public domain W3C validator