| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. See also fuco23a 49007. (Contributed by Zhi Wang, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | 
| fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | 
| fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | 
| fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | 
| fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | 
| fuco23.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | 
| fuco23.o | ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | 
| Ref | Expression | 
|---|---|
| fuco23 | ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 3 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 4 | fuco22.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 5 | fuco22.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 6 | 1, 2, 3, 4, 5 | fuco22 48994 | . 2 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) | 
| 7 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 8 | 7 | fveq2d 6891 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) | 
| 9 | 8 | fveq2d 6891 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑋))) | 
| 10 | 7 | fveq2d 6891 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑀‘𝑥) = (𝑀‘𝑋)) | 
| 11 | 10 | fveq2d 6891 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝑀‘𝑥)) = (𝐾‘(𝑀‘𝑋))) | 
| 12 | 9, 11 | opeq12d 4863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉) | 
| 13 | 10 | fveq2d 6891 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑅‘(𝑀‘𝑥)) = (𝑅‘(𝑀‘𝑋))) | 
| 14 | 12, 13 | oveq12d 7432 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | 
| 15 | fuco23.o | . . . . 5 ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | 
| 17 | 14, 16 | eqtr4d 2772 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = ∗ ) | 
| 18 | 10 | fveq2d 6891 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐵‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑋))) | 
| 19 | 8, 10 | oveq12d 7432 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝐿(𝑀‘𝑥)) = ((𝐹‘𝑋)𝐿(𝑀‘𝑋))) | 
| 20 | 7 | fveq2d 6891 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐴‘𝑋)) | 
| 21 | 19, 20 | fveq12d 6894 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)) = (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) | 
| 22 | 17, 18, 21 | oveq123d 7435 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | 
| 23 | fuco23.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 24 | ovexd 7449 | . 2 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) ∈ V) | |
| 25 | 6, 22, 23, 24 | fvmptd 7004 | 1 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 〈cop 4614 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 compcco 17286 Nat cnat 17961 ∘F cfuco 48971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-ixp 8921 df-func 17875 df-cofu 17877 df-nat 17963 df-fuco 48972 | 
| This theorem is referenced by: fuco22natlem3 48999 fuco22natlem 49000 fuco23a 49007 | 
| Copyright terms: Public domain | W3C validator |