Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco23 Structured version   Visualization version   GIF version

Theorem fuco23 48908
Description: The morphism part of the functor composition bifunctor. See also fuco23a 48919. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco22.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
fuco22.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco23.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco23.o (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
Assertion
Ref Expression
fuco23 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))

Proof of Theorem fuco23
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fuco22.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco22.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
3 fuco22.v . . 3 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
4 fuco22.a . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
5 fuco22.b . . 3 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
61, 2, 3, 4, 5fuco22 48906 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
7 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6918 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98fveq2d 6918 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝐹𝑥)) = (𝐾‘(𝐹𝑋)))
107fveq2d 6918 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (𝑀𝑥) = (𝑀𝑋))
1110fveq2d 6918 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝐾‘(𝑀𝑥)) = (𝐾‘(𝑀𝑋)))
129, 11opeq12d 4889 . . . . 5 ((𝜑𝑥 = 𝑋) → ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩ = ⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩)
1310fveq2d 6918 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑅‘(𝑀𝑥)) = (𝑅‘(𝑀𝑋)))
1412, 13oveq12d 7456 . . . 4 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
15 fuco23.o . . . . 5 (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1615adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))
1714, 16eqtr4d 2780 . . 3 ((𝜑𝑥 = 𝑋) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = )
1810fveq2d 6918 . . 3 ((𝜑𝑥 = 𝑋) → (𝐵‘(𝑀𝑥)) = (𝐵‘(𝑀𝑋)))
198, 10oveq12d 7456 . . . 4 ((𝜑𝑥 = 𝑋) → ((𝐹𝑥)𝐿(𝑀𝑥)) = ((𝐹𝑋)𝐿(𝑀𝑋)))
207fveq2d 6918 . . . 4 ((𝜑𝑥 = 𝑋) → (𝐴𝑥) = (𝐴𝑋))
2119, 20fveq12d 6921 . . 3 ((𝜑𝑥 = 𝑋) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) = (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))
2217, 18, 21oveq123d 7459 . 2 ((𝜑𝑥 = 𝑋) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
23 fuco23.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
24 ovexd 7473 . 2 (𝜑 → ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) ∈ V)
256, 22, 23, 24fvmptd 7030 1 (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cop 4640  cfv 6569  (class class class)co 7438  Basecbs 17254  compcco 17319   Nat cnat 18005  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-ixp 8946  df-func 17918  df-cofu 17920  df-nat 18007  df-fuco 48886
This theorem is referenced by:  fuco22natlem3  48911  fuco22natlem  48912  fuco23a  48919
  Copyright terms: Public domain W3C validator