| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the functor composition bifunctor. See also fuco23a 49383. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| fuco23.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco23.o | ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| Ref | Expression |
|---|---|
| fuco23 | ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 3 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
| 4 | fuco22.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
| 5 | fuco22.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
| 6 | 1, 2, 3, 4, 5 | fuco22 49370 | . 2 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
| 7 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 8 | 7 | fveq2d 6826 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 9 | 8 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑋))) |
| 10 | 7 | fveq2d 6826 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑀‘𝑥) = (𝑀‘𝑋)) |
| 11 | 10 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝑀‘𝑥)) = (𝐾‘(𝑀‘𝑋))) |
| 12 | 9, 11 | opeq12d 4833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉) |
| 13 | 10 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑅‘(𝑀‘𝑥)) = (𝑅‘(𝑀‘𝑋))) |
| 14 | 12, 13 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| 15 | fuco23.o | . . . . 5 ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
| 17 | 14, 16 | eqtr4d 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = ∗ ) |
| 18 | 10 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐵‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑋))) |
| 19 | 8, 10 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝐿(𝑀‘𝑥)) = ((𝐹‘𝑋)𝐿(𝑀‘𝑋))) |
| 20 | 7 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐴‘𝑋)) |
| 21 | 19, 20 | fveq12d 6829 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)) = (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) |
| 22 | 17, 18, 21 | oveq123d 7367 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| 23 | fuco23.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 24 | ovexd 7381 | . 2 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) ∈ V) | |
| 25 | 6, 22, 23, 24 | fvmptd 6936 | 1 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 compcco 17170 Nat cnat 17848 ∘F cfuco 49347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-func 17762 df-cofu 17764 df-nat 17850 df-fuco 49348 |
| This theorem is referenced by: fuco22natlem3 49375 fuco22natlem 49376 fuco23a 49383 |
| Copyright terms: Public domain | W3C validator |