![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco23 | Structured version Visualization version GIF version |
Description: The morphism part of the functor composition bifunctor. See also fuco23a 48919. (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fuco22.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fuco22.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
fuco22.v | ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
fuco22.a | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
fuco22.b | ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
fuco23.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
fuco23.o | ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
Ref | Expression |
---|---|
fuco23 | ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco22.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
2 | fuco22.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
3 | fuco22.v | . . 3 ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) | |
4 | fuco22.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) | |
5 | fuco22.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) | |
6 | 1, 2, 3, 4, 5 | fuco22 48906 | . 2 ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) |
7 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
8 | 7 | fveq2d 6918 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
9 | 8 | fveq2d 6918 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝐹‘𝑥)) = (𝐾‘(𝐹‘𝑋))) |
10 | 7 | fveq2d 6918 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑀‘𝑥) = (𝑀‘𝑋)) |
11 | 10 | fveq2d 6918 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐾‘(𝑀‘𝑥)) = (𝐾‘(𝑀‘𝑋))) |
12 | 9, 11 | opeq12d 4889 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉) |
13 | 10 | fveq2d 6918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑅‘(𝑀‘𝑥)) = (𝑅‘(𝑀‘𝑋))) |
14 | 12, 13 | oveq12d 7456 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
15 | fuco23.o | . . . . 5 ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) | |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) |
17 | 14, 16 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = ∗ ) |
18 | 10 | fveq2d 6918 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐵‘(𝑀‘𝑥)) = (𝐵‘(𝑀‘𝑋))) |
19 | 8, 10 | oveq12d 7456 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝐿(𝑀‘𝑥)) = ((𝐹‘𝑋)𝐿(𝑀‘𝑋))) |
20 | 7 | fveq2d 6918 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐴‘𝑋)) |
21 | 19, 20 | fveq12d 6921 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)) = (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) |
22 | 17, 18, 21 | oveq123d 7459 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
23 | fuco23.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
24 | ovexd 7473 | . 2 ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) ∈ V) | |
25 | 6, 22, 23, 24 | fvmptd 7030 | 1 ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 compcco 17319 Nat cnat 18005 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-ixp 8946 df-func 17918 df-cofu 17920 df-nat 18007 df-fuco 48886 |
This theorem is referenced by: fuco22natlem3 48911 fuco22natlem 48912 fuco23a 48919 |
Copyright terms: Public domain | W3C validator |