![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim2lem | Structured version Visualization version GIF version |
Description: Lemma for xlimclim2 45290. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimclim2lem.z | β’ π = (β€β₯βπ) |
xlimclim2lem.f | β’ (π β πΉ:πβΆβ*) |
xlimclim2lem.a | β’ (π β π΄ β β) |
xlimclim2lem.r | β’ (π β βπ β π (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) |
Ref | Expression |
---|---|
xlimclim2lem | β’ (π β (πΉ~~>*π΄ β πΉ β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimclim2lem.z | . . . . . 6 β’ π = (β€β₯βπ) | |
2 | xlimclim2lem.f | . . . . . 6 β’ (π β πΉ:πβΆβ*) | |
3 | 1, 2 | fuzxrpmcn 45278 | . . . . 5 β’ (π β πΉ β (β* βpm β)) |
4 | 3 | ad2antrr 724 | . . . 4 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β πΉ β (β* βpm β)) |
5 | 1 | eluzelz2 44847 | . . . . 5 β’ (π β π β π β β€) |
6 | 5 | ad2antlr 725 | . . . 4 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β π β β€) |
7 | 4, 6 | xlimres 45271 | . . 3 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β (πΉ~~>*π΄ β (πΉ βΎ (β€β₯βπ))~~>*π΄)) |
8 | eqid 2725 | . . . 4 β’ (β€β₯βπ) = (β€β₯βπ) | |
9 | simpr 483 | . . . 4 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) | |
10 | xlimclim2lem.a | . . . . 5 β’ (π β π΄ β β) | |
11 | 10 | ad2antrr 724 | . . . 4 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β π΄ β β) |
12 | 6, 8, 9, 11 | xlimclim 45274 | . . 3 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β ((πΉ βΎ (β€β₯βπ))~~>*π΄ β (πΉ βΎ (β€β₯βπ)) β π΄)) |
13 | 1 | fvexi 6905 | . . . . . . 7 β’ π β V |
14 | 13 | a1i 11 | . . . . . 6 β’ (π β π β V) |
15 | 2, 14 | fexd 7234 | . . . . 5 β’ (π β πΉ β V) |
16 | climres 15549 | . . . . 5 β’ ((π β β€ β§ πΉ β V) β ((πΉ βΎ (β€β₯βπ)) β π΄ β πΉ β π΄)) | |
17 | 5, 15, 16 | syl2anr 595 | . . . 4 β’ ((π β§ π β π) β ((πΉ βΎ (β€β₯βπ)) β π΄ β πΉ β π΄)) |
18 | 17 | adantr 479 | . . 3 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β ((πΉ βΎ (β€β₯βπ)) β π΄ β πΉ β π΄)) |
19 | 7, 12, 18 | 3bitrd 304 | . 2 β’ (((π β§ π β π) β§ (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) β (πΉ~~>*π΄ β πΉ β π΄)) |
20 | xlimclim2lem.r | . 2 β’ (π β βπ β π (πΉ βΎ (β€β₯βπ)):(β€β₯βπ)βΆβ) | |
21 | 19, 20 | r19.29a 3152 | 1 β’ (π β (πΉ~~>*π΄ β πΉ β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3060 Vcvv 3463 class class class wbr 5143 βΎ cres 5674 βΆwf 6538 βcfv 6542 (class class class)co 7415 βpm cpm 8842 βcc 11134 βcr 11135 β*cxr 11275 β€cz 12586 β€β₯cuz 12850 β cli 15458 ~~>*clsxlim 45268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fl 13787 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-rlim 15463 df-struct 17113 df-slot 17148 df-ndx 17160 df-base 17178 df-plusg 17243 df-mulr 17244 df-starv 17245 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-rest 17401 df-topn 17402 df-topgen 17422 df-ordt 17480 df-ps 18555 df-tsr 18556 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-lm 23149 df-xms 24242 df-ms 24243 df-xlim 45269 |
This theorem is referenced by: xlimclim2 45290 |
Copyright terms: Public domain | W3C validator |