Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimclim2lem Structured version   Visualization version   GIF version

Theorem xlimclim2lem 45837
Description: Lemma for xlimclim2 45838. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimclim2lem.z 𝑍 = (ℤ𝑀)
xlimclim2lem.f (𝜑𝐹:𝑍⟶ℝ*)
xlimclim2lem.a (𝜑𝐴 ∈ ℝ)
xlimclim2lem.r (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Assertion
Ref Expression
xlimclim2lem (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝜑,𝑗
Allowed substitution hints:   𝑀(𝑗)   𝑍(𝑗)

Proof of Theorem xlimclim2lem
StepHypRef Expression
1 xlimclim2lem.z . . . . . 6 𝑍 = (ℤ𝑀)
2 xlimclim2lem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
31, 2fuzxrpmcn 45826 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
43ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐹 ∈ (ℝ*pm ℂ))
51eluzelz2 45399 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
65ad2antlr 727 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝑗 ∈ ℤ)
74, 6xlimres 45819 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
8 eqid 2729 . . . 4 (ℤ𝑗) = (ℤ𝑗)
9 simpr 484 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
10 xlimclim2lem.a . . . . 5 (𝜑𝐴 ∈ ℝ)
1110ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐴 ∈ ℝ)
126, 8, 9, 11xlimclim 45822 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗))~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴))
131fvexi 6872 . . . . . . 7 𝑍 ∈ V
1413a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
152, 14fexd 7201 . . . . 5 (𝜑𝐹 ∈ V)
16 climres 15541 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
175, 15, 16syl2anr 597 . . . 4 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1817adantr 480 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
197, 12, 183bitrd 305 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴𝐹𝐴))
20 xlimclim2lem.r . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
2119, 20r19.29a 3141 1 (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447   class class class wbr 5107  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  cr 11067  *cxr 11207  cz 12529  cuz 12793  cli 15450  ~~>*clsxlim 45816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-lm 23116  df-xms 24208  df-ms 24209  df-xlim 45817
This theorem is referenced by:  xlimclim2  45838
  Copyright terms: Public domain W3C validator