Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimclim2lem Structured version   Visualization version   GIF version

Theorem xlimclim2lem 45854
Description: Lemma for xlimclim2 45855. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimclim2lem.z 𝑍 = (ℤ𝑀)
xlimclim2lem.f (𝜑𝐹:𝑍⟶ℝ*)
xlimclim2lem.a (𝜑𝐴 ∈ ℝ)
xlimclim2lem.r (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Assertion
Ref Expression
xlimclim2lem (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝜑,𝑗
Allowed substitution hints:   𝑀(𝑗)   𝑍(𝑗)

Proof of Theorem xlimclim2lem
StepHypRef Expression
1 xlimclim2lem.z . . . . . 6 𝑍 = (ℤ𝑀)
2 xlimclim2lem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
31, 2fuzxrpmcn 45843 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
43ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐹 ∈ (ℝ*pm ℂ))
51eluzelz2 45414 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
65ad2antlr 727 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝑗 ∈ ℤ)
74, 6xlimres 45836 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
8 eqid 2737 . . . 4 (ℤ𝑗) = (ℤ𝑗)
9 simpr 484 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
10 xlimclim2lem.a . . . . 5 (𝜑𝐴 ∈ ℝ)
1110ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐴 ∈ ℝ)
126, 8, 9, 11xlimclim 45839 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗))~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴))
131fvexi 6920 . . . . . . 7 𝑍 ∈ V
1413a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
152, 14fexd 7247 . . . . 5 (𝜑𝐹 ∈ V)
16 climres 15611 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
175, 15, 16syl2anr 597 . . . 4 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1817adantr 480 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
197, 12, 183bitrd 305 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴𝐹𝐴))
20 xlimclim2lem.r . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
2119, 20r19.29a 3162 1 (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480   class class class wbr 5143  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153  cr 11154  *cxr 11294  cz 12613  cuz 12878  cli 15520  ~~>*clsxlim 45833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-lm 23237  df-xms 24330  df-ms 24331  df-xlim 45834
This theorem is referenced by:  xlimclim2  45855
  Copyright terms: Public domain W3C validator