Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimclim2lem Structured version   Visualization version   GIF version

Theorem xlimclim2lem 45810
Description: Lemma for xlimclim2 45811. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimclim2lem.z 𝑍 = (ℤ𝑀)
xlimclim2lem.f (𝜑𝐹:𝑍⟶ℝ*)
xlimclim2lem.a (𝜑𝐴 ∈ ℝ)
xlimclim2lem.r (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Assertion
Ref Expression
xlimclim2lem (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝜑,𝑗
Allowed substitution hints:   𝑀(𝑗)   𝑍(𝑗)

Proof of Theorem xlimclim2lem
StepHypRef Expression
1 xlimclim2lem.z . . . . . 6 𝑍 = (ℤ𝑀)
2 xlimclim2lem.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
31, 2fuzxrpmcn 45799 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
43ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐹 ∈ (ℝ*pm ℂ))
51eluzelz2 45372 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
65ad2antlr 727 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝑗 ∈ ℤ)
74, 6xlimres 45792 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
8 eqid 2729 . . . 4 (ℤ𝑗) = (ℤ𝑗)
9 simpr 484 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
10 xlimclim2lem.a . . . . 5 (𝜑𝐴 ∈ ℝ)
1110ad2antrr 726 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝐴 ∈ ℝ)
126, 8, 9, 11xlimclim 45795 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗))~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴))
131fvexi 6854 . . . . . . 7 𝑍 ∈ V
1413a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
152, 14fexd 7183 . . . . 5 (𝜑𝐹 ∈ V)
16 climres 15517 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
175, 15, 16syl2anr 597 . . . 4 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1817adantr 480 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
197, 12, 183bitrd 305 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹~~>*𝐴𝐹𝐴))
20 xlimclim2lem.r . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
2119, 20r19.29a 3141 1 (𝜑 → (𝐹~~>*𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444   class class class wbr 5102  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cr 11043  *cxr 11183  cz 12505  cuz 12769  cli 15426  ~~>*clsxlim 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-ordt 17440  df-ps 18501  df-tsr 18502  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-lm 23092  df-xms 24184  df-ms 24185  df-xlim 45790
This theorem is referenced by:  xlimclim2  45811
  Copyright terms: Public domain W3C validator