| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for xlimclim2 45821. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimclim2lem.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimclim2lem.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimclim2lem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| xlimclim2lem.r | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| Ref | Expression |
|---|---|
| xlimclim2lem | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimclim2lem.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | xlimclim2lem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 3 | 1, 2 | fuzxrpmcn 45809 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 4 | 3 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 5 | 1 | eluzelz2 45382 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 6 | 5 | ad2antlr 727 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝑗 ∈ ℤ) |
| 7 | 4, 6 | xlimres 45802 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
| 8 | eqid 2729 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
| 9 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | |
| 10 | xlimclim2lem.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝐴 ∈ ℝ) |
| 12 | 6, 8, 9, 11 | xlimclim 45805 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴)) |
| 13 | 1 | fvexi 6836 | . . . . . . 7 ⊢ 𝑍 ∈ V |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ V) |
| 15 | 2, 14 | fexd 7163 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 16 | climres 15482 | . . . . 5 ⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
| 17 | 5, 15, 16 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 18 | 17 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 19 | 7, 12, 18 | 3bitrd 305 | . 2 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 20 | xlimclim2lem.r | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | |
| 21 | 19, 20 | r19.29a 3137 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑pm cpm 8754 ℂcc 11007 ℝcr 11008 ℝ*cxr 11148 ℤcz 12471 ℤ≥cuz 12735 ⇝ cli 15391 ~~>*clsxlim 45799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-ordt 17405 df-ps 18472 df-tsr 18473 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-lm 23114 df-xms 24206 df-ms 24207 df-xlim 45800 |
| This theorem is referenced by: xlimclim2 45821 |
| Copyright terms: Public domain | W3C validator |