Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim2lem | Structured version Visualization version GIF version |
Description: Lemma for xlimclim2 43625. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimclim2lem.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimclim2lem.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimclim2lem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
xlimclim2lem.r | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Ref | Expression |
---|---|
xlimclim2lem | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimclim2lem.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | xlimclim2lem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
3 | 1, 2 | fuzxrpmcn 43613 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
4 | 3 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
5 | 1 | eluzelz2 43186 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
6 | 5 | ad2antlr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝑗 ∈ ℤ) |
7 | 4, 6 | xlimres 43606 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
8 | eqid 2737 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
9 | simpr 485 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | |
10 | xlimclim2lem.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | 10 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝐴 ∈ ℝ) |
12 | 6, 8, 9, 11 | xlimclim 43609 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴)) |
13 | 1 | fvexi 6823 | . . . . . . 7 ⊢ 𝑍 ∈ V |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ V) |
15 | 2, 14 | fexd 7140 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
16 | climres 15353 | . . . . 5 ⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
17 | 5, 15, 16 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
18 | 17 | adantr 481 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
19 | 7, 12, 18 | 3bitrd 304 | . 2 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
20 | xlimclim2lem.r | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | |
21 | 19, 20 | r19.29a 3156 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 Vcvv 3441 class class class wbr 5085 ↾ cres 5607 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ↑pm cpm 8662 ℂcc 10939 ℝcr 10940 ℝ*cxr 11078 ℤcz 12389 ℤ≥cuz 12652 ⇝ cli 15262 ~~>*clsxlim 43603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-pm 8664 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fi 9238 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-ioc 13154 df-ico 13155 df-icc 13156 df-fz 13310 df-fl 13582 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-rlim 15267 df-struct 16915 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-mulr 17043 df-starv 17044 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-rest 17200 df-topn 17201 df-topgen 17221 df-ordt 17279 df-ps 18351 df-tsr 18352 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-lm 22451 df-xms 23544 df-ms 23545 df-xlim 43604 |
This theorem is referenced by: xlimclim2 43625 |
Copyright terms: Public domain | W3C validator |