Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gicrcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
gicrcl | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 18981 | . . 3 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4297 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) |
4 | gimghm 18976 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆)) | |
5 | ghmgrp2 18933 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ∈ Grp) |
7 | 6 | exlimiv 1933 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ∈ Grp) |
8 | 3, 7 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∅c0 4273 class class class wbr 5096 (class class class)co 7341 Grpcgrp 18673 GrpHom cghm 18927 GrpIso cgim 18969 ≃𝑔 cgic 18970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-1o 8371 df-ghm 18928 df-gim 18971 df-gic 18972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |