| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicrcl | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| gicrcl | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic 19202 | . . 3 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
| 2 | n0 4316 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) |
| 4 | gimghm 19196 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆)) | |
| 5 | ghmgrp2 19151 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ∈ Grp) |
| 7 | 6 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ∈ Grp) |
| 8 | 3, 7 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 (class class class)co 7387 Grpcgrp 18865 GrpHom cghm 19144 GrpIso cgim 19189 ≃𝑔 cgic 19190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-map 8801 df-ghm 19145 df-gim 19191 df-gic 19192 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |