MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  giclcl Structured version   Visualization version   GIF version

Theorem giclcl 18803
Description: Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
giclcl (𝑅𝑔 𝑆𝑅 ∈ Grp)

Proof of Theorem giclcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 18800 . . 3 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4277 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
31, 2bitri 274 . 2 (𝑅𝑔 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
4 gimghm 18795 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆))
5 ghmgrp1 18751 . . . 4 (𝑓 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
64, 5syl 17 . . 3 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp)
76exlimiv 1934 . 2 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp)
83, 7sylbi 216 1 (𝑅𝑔 𝑆𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  (class class class)co 7255  Grpcgrp 18492   GrpHom cghm 18746   GrpIso cgim 18788  𝑔 cgic 18789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-1o 8267  df-ghm 18747  df-gim 18790  df-gic 18791
This theorem is referenced by:  gicer  18807
  Copyright terms: Public domain W3C validator