Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > giclcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
giclcl | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 18883 | . . 3 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4286 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) |
4 | gimghm 18878 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆)) | |
5 | ghmgrp1 18834 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp) |
7 | 6 | exlimiv 1937 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp) |
8 | 3, 7 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 class class class wbr 5079 (class class class)co 7271 Grpcgrp 18575 GrpHom cghm 18829 GrpIso cgim 18871 ≃𝑔 cgic 18872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-1o 8288 df-ghm 18830 df-gim 18873 df-gic 18874 |
This theorem is referenced by: gicer 18890 |
Copyright terms: Public domain | W3C validator |