MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbelss Structured version   Visualization version   GIF version

Theorem glbelss 18413
Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbs.b 𝐵 = (Base‘𝐾)
glbs.l = (le‘𝐾)
glbs.g 𝐺 = (glb‘𝐾)
glbs.k (𝜑𝐾𝑉)
glbs.s (𝜑𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbelss (𝜑𝑆𝐵)

Proof of Theorem glbelss
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 glbs.s . . 3 (𝜑𝑆 ∈ dom 𝐺)
2 glbs.b . . . 4 𝐵 = (Base‘𝐾)
3 glbs.l . . . 4 = (le‘𝐾)
4 glbs.g . . . 4 𝐺 = (glb‘𝐾)
5 biid 261 . . . 4 ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
6 glbs.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6glbeldm 18412 . . 3 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))))
81, 7mpbid 232 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
98simpld 494 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  ∃!wreu 3377  wss 3950   class class class wbr 5142  dom cdm 5684  cfv 6560  Basecbs 17248  lecple 17305  glbcglb 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-glb 18393
This theorem is referenced by:  glbcl  18416  glbprop  18417  meetfval  18433  meetdmss  18439  glbsscl  48865
  Copyright terms: Public domain W3C validator