![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glbelss | Structured version Visualization version GIF version |
Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbs.b | β’ π΅ = (BaseβπΎ) |
glbs.l | β’ β€ = (leβπΎ) |
glbs.g | β’ πΊ = (glbβπΎ) |
glbs.k | β’ (π β πΎ β π) |
glbs.s | β’ (π β π β dom πΊ) |
Ref | Expression |
---|---|
glbelss | β’ (π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbs.s | . . 3 β’ (π β π β dom πΊ) | |
2 | glbs.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
3 | glbs.l | . . . 4 β’ β€ = (leβπΎ) | |
4 | glbs.g | . . . 4 β’ πΊ = (glbβπΎ) | |
5 | biid 260 | . . . 4 β’ ((βπ¦ β π π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ π₯)) β (βπ¦ β π π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ π₯))) | |
6 | glbs.k | . . . 4 β’ (π β πΎ β π) | |
7 | 2, 3, 4, 5, 6 | glbeldm 18315 | . . 3 β’ (π β (π β dom πΊ β (π β π΅ β§ β!π₯ β π΅ (βπ¦ β π π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ π₯))))) |
8 | 1, 7 | mpbid 231 | . 2 β’ (π β (π β π΅ β§ β!π₯ β π΅ (βπ¦ β π π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ π₯)))) |
9 | 8 | simpld 495 | 1 β’ (π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β!wreu 3374 β wss 3947 class class class wbr 5147 dom cdm 5675 βcfv 6540 Basecbs 17140 lecple 17200 glbcglb 18259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-glb 18296 |
This theorem is referenced by: glbcl 18319 glbprop 18320 meetfval 18336 meetdmss 18342 glbsscl 47547 |
Copyright terms: Public domain | W3C validator |