| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbelss | Structured version Visualization version GIF version | ||
| Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbs.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbs.l | ⊢ ≤ = (le‘𝐾) |
| glbs.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbs.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbs.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| glbelss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbs.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 2 | glbs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbs.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 6 | glbs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 7 | 2, 3, 4, 5, 6 | glbeldm 18381 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 9 | 8 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃!wreu 3362 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 glbcglb 18327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-glb 18362 |
| This theorem is referenced by: glbcl 18385 glbprop 18386 meetfval 18402 meetdmss 18408 glbsscl 48915 |
| Copyright terms: Public domain | W3C validator |