| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbelss | Structured version Visualization version GIF version | ||
| Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbs.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbs.l | ⊢ ≤ = (le‘𝐾) |
| glbs.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbs.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbs.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| glbelss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbs.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 2 | glbs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbs.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 6 | glbs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 7 | 2, 3, 4, 5, 6 | glbeldm 18325 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 9 | 8 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 Basecbs 17179 lecple 17227 glbcglb 18271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-glb 18306 |
| This theorem is referenced by: glbcl 18329 glbprop 18330 meetfval 18346 meetdmss 18352 glbsscl 48949 |
| Copyright terms: Public domain | W3C validator |