| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbelss | Structured version Visualization version GIF version | ||
| Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbs.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbs.l | ⊢ ≤ = (le‘𝐾) |
| glbs.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbs.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbs.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| glbelss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbs.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 2 | glbs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbs.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 6 | glbs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 7 | 2, 3, 4, 5, 6 | glbeldm 18270 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 9 | 8 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 Basecbs 17120 lecple 17168 glbcglb 18216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-glb 18251 |
| This theorem is referenced by: glbcl 18274 glbprop 18275 meetfval 18291 meetdmss 18297 glbsscl 48998 |
| Copyright terms: Public domain | W3C validator |