MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbelss Structured version   Visualization version   GIF version

Theorem glbelss 18271
Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbs.b 𝐵 = (Base‘𝐾)
glbs.l = (le‘𝐾)
glbs.g 𝐺 = (glb‘𝐾)
glbs.k (𝜑𝐾𝑉)
glbs.s (𝜑𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbelss (𝜑𝑆𝐵)

Proof of Theorem glbelss
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 glbs.s . . 3 (𝜑𝑆 ∈ dom 𝐺)
2 glbs.b . . . 4 𝐵 = (Base‘𝐾)
3 glbs.l . . . 4 = (le‘𝐾)
4 glbs.g . . . 4 𝐺 = (glb‘𝐾)
5 biid 261 . . . 4 ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
6 glbs.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6glbeldm 18270 . . 3 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))))
81, 7mpbid 232 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
98simpld 494 1 (𝜑𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  wss 3902   class class class wbr 5091  dom cdm 5616  cfv 6481  Basecbs 17120  lecple 17168  glbcglb 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-glb 18251
This theorem is referenced by:  glbcl  18274  glbprop  18275  meetfval  18291  meetdmss  18297  glbsscl  48998
  Copyright terms: Public domain W3C validator