Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glbelss | Structured version Visualization version GIF version |
Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbs.b | ⊢ 𝐵 = (Base‘𝐾) |
glbs.l | ⊢ ≤ = (le‘𝐾) |
glbs.g | ⊢ 𝐺 = (glb‘𝐾) |
glbs.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbs.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
Ref | Expression |
---|---|
glbelss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbs.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
2 | glbs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | glbs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | glbs.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
5 | biid 260 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
6 | glbs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
7 | 2, 3, 4, 5, 6 | glbeldm 18112 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))) |
8 | 1, 7 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
9 | 8 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∀wral 3059 ∃!wreu 3219 ⊆ wss 3889 class class class wbr 5077 dom cdm 5591 ‘cfv 6447 Basecbs 16940 lecple 16997 glbcglb 18056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-glb 18093 |
This theorem is referenced by: glbcl 18116 glbprop 18117 meetfval 18133 meetdmss 18139 glbsscl 46295 |
Copyright terms: Public domain | W3C validator |