MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbelss Structured version   Visualization version   GIF version

Theorem glbelss 18316
Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbs.b 𝐡 = (Baseβ€˜πΎ)
glbs.l ≀ = (leβ€˜πΎ)
glbs.g 𝐺 = (glbβ€˜πΎ)
glbs.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
glbs.s (πœ‘ β†’ 𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbelss (πœ‘ β†’ 𝑆 βŠ† 𝐡)

Proof of Theorem glbelss
Dummy variables π‘₯ 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 glbs.s . . 3 (πœ‘ β†’ 𝑆 ∈ dom 𝐺)
2 glbs.b . . . 4 𝐡 = (Baseβ€˜πΎ)
3 glbs.l . . . 4 ≀ = (leβ€˜πΎ)
4 glbs.g . . . 4 𝐺 = (glbβ€˜πΎ)
5 biid 260 . . . 4 ((βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)))
6 glbs.k . . . 4 (πœ‘ β†’ 𝐾 ∈ 𝑉)
72, 3, 4, 5, 6glbeldm 18315 . . 3 (πœ‘ β†’ (𝑆 ∈ dom 𝐺 ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)))))
81, 7mpbid 231 . 2 (πœ‘ β†’ (𝑆 βŠ† 𝐡 ∧ βˆƒ!π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯))))
98simpld 495 1 (πœ‘ β†’ 𝑆 βŠ† 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒ!wreu 3374   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540  Basecbs 17140  lecple 17200  glbcglb 18259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-glb 18296
This theorem is referenced by:  glbcl  18319  glbprop  18320  meetfval  18336  meetdmss  18342  glbsscl  47547
  Copyright terms: Public domain W3C validator