MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbeu Structured version   Visualization version   GIF version

Theorem glbeu 17715
Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.s (𝜑𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbeu (𝜑 → ∃!𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbeu
StepHypRef Expression
1 glbval.s . . 3 (𝜑𝑆 ∈ dom 𝐺)
2 glbval.b . . . 4 𝐵 = (Base‘𝐾)
3 glbval.l . . . 4 = (le‘𝐾)
4 glbval.g . . . 4 𝐺 = (glb‘𝐾)
5 glbval.p . . . 4 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
6 glbva.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6glbeldm 17713 . . 3 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
81, 7mpbid 235 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
98simprd 499 1 (𝜑 → ∃!𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  ∃!wreu 3055  wss 3841   class class class wbr 5027  dom cdm 5519  cfv 6333  Basecbs 16579  lecple 16668  glbcglb 17662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-glb 17694
This theorem is referenced by:  glbval  17716  glbcl  17717  glbprop  17718  meeteu  17743  isglbd  17836
  Copyright terms: Public domain W3C validator