|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > glbcl | Structured version Visualization version GIF version | ||
| Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| glbc.b | ⊢ 𝐵 = (Base‘𝐾) | 
| glbc.g | ⊢ 𝐺 = (glb‘𝐾) | 
| glbc.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) | 
| glbc.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | 
| Ref | Expression | 
|---|---|
| glbcl | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | glbc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2737 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | glbc.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
| 5 | glbc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbc.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 7 | 1, 2, 3, 5, 6 | glbelss 18412 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 8 | 1, 2, 3, 4, 5, 7 | glbval 18414 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) | 
| 9 | 1, 2, 3, 4, 5, 6 | glbeu 18413 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | 
| 10 | riotacl 7405 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) | 
| 12 | 8, 11 | eqeltrd 2841 | 1 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃!wreu 3378 class class class wbr 5143 dom cdm 5685 ‘cfv 6561 ℩crio 7387 Basecbs 17247 lecple 17304 glbcglb 18356 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-glb 18392 | 
| This theorem is referenced by: glbprop 18416 meetcl 18437 clatlem 18547 op0cl 39185 atl0cl 39304 | 
| Copyright terms: Public domain | W3C validator |