MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbcl Structured version   Visualization version   GIF version

Theorem glbcl 18274
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbc.b 𝐵 = (Base‘𝐾)
glbc.g 𝐺 = (glb‘𝐾)
glbc.k (𝜑𝐾𝑉)
glbc.s (𝜑𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbcl (𝜑 → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem glbcl
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 glbc.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
3 glbc.g . . 3 𝐺 = (glb‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 glbc.k . . 3 (𝜑𝐾𝑉)
6 glbc.s . . . 4 (𝜑𝑆 ∈ dom 𝐺)
71, 2, 3, 5, 6glbelss 18271 . . 3 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7glbval 18273 . 2 (𝜑 → (𝐺𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
91, 2, 3, 4, 5, 6glbeu 18272 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
10 riotacl 7320 . . 3 (∃!𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) → (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ∈ 𝐵)
119, 10syl 17 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ∈ 𝐵)
128, 11eqeltrd 2831 1 (𝜑 → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344   class class class wbr 5089  dom cdm 5614  cfv 6481  crio 7302  Basecbs 17120  lecple 17168  glbcglb 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-glb 18251
This theorem is referenced by:  glbprop  18275  meetcl  18296  clatlem  18408  op0cl  39231  atl0cl  39350
  Copyright terms: Public domain W3C validator