MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbcl Structured version   Visualization version   GIF version

Theorem glbcl 18274
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbc.b 𝐵 = (Base‘𝐾)
glbc.g 𝐺 = (glb‘𝐾)
glbc.k (𝜑𝐾𝑉)
glbc.s (𝜑𝑆 ∈ dom 𝐺)
Assertion
Ref Expression
glbcl (𝜑 → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem glbcl
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 glbc.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 glbc.g . . 3 𝐺 = (glb‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 glbc.k . . 3 (𝜑𝐾𝑉)
6 glbc.s . . . 4 (𝜑𝑆 ∈ dom 𝐺)
71, 2, 3, 5, 6glbelss 18271 . . 3 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7glbval 18273 . 2 (𝜑 → (𝐺𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
91, 2, 3, 4, 5, 6glbeu 18272 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
10 riotacl 7323 . . 3 (∃!𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) → (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ∈ 𝐵)
119, 10syl 17 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ∈ 𝐵)
128, 11eqeltrd 2828 1 (𝜑 → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3341   class class class wbr 5092  dom cdm 5619  cfv 6482  crio 7305  Basecbs 17120  lecple 17168  glbcglb 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-glb 18251
This theorem is referenced by:  glbprop  18275  meetcl  18296  clatlem  18408  op0cl  39163  atl0cl  39282
  Copyright terms: Public domain W3C validator