| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbcl | Structured version Visualization version GIF version | ||
| Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbc.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbc.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbc.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbc.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| glbcl | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | glbc.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
| 5 | glbc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbc.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 7 | 1, 2, 3, 5, 6 | glbelss 18271 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 7 | glbval 18273 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) |
| 9 | 1, 2, 3, 4, 5, 6 | glbeu 18272 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 10 | riotacl 7320 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) |
| 12 | 8, 11 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 ℩crio 7302 Basecbs 17120 lecple 17168 glbcglb 18216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-glb 18251 |
| This theorem is referenced by: glbprop 18275 meetcl 18296 clatlem 18408 op0cl 39231 atl0cl 39350 |
| Copyright terms: Public domain | W3C validator |