Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glbcl | Structured version Visualization version GIF version |
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbc.b | ⊢ 𝐵 = (Base‘𝐾) |
glbc.g | ⊢ 𝐺 = (glb‘𝐾) |
glbc.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbc.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
Ref | Expression |
---|---|
glbcl | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | glbc.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 260 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
5 | glbc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbc.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
7 | 1, 2, 3, 5, 6 | glbelss 18085 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | glbval 18087 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) |
9 | 1, 2, 3, 4, 5, 6 | glbeu 18086 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
10 | riotacl 7250 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) |
12 | 8, 11 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ℩crio 7231 Basecbs 16912 lecple 16969 glbcglb 18028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-glb 18065 |
This theorem is referenced by: glbprop 18089 meetcl 18110 clatlem 18220 op0cl 37198 atl0cl 37317 |
Copyright terms: Public domain | W3C validator |