| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbcl | Structured version Visualization version GIF version | ||
| Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbc.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbc.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbc.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbc.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| glbcl | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | glbc.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
| 5 | glbc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbc.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 7 | 1, 2, 3, 5, 6 | glbelss 18381 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 7 | glbval 18383 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) |
| 9 | 1, 2, 3, 4, 5, 6 | glbeu 18382 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 10 | riotacl 7387 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) ∈ 𝐵) |
| 12 | 8, 11 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 ℩crio 7369 Basecbs 17229 lecple 17280 glbcglb 18326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-glb 18361 |
| This theorem is referenced by: glbprop 18385 meetcl 18406 clatlem 18516 op0cl 39144 atl0cl 39263 |
| Copyright terms: Public domain | W3C validator |