| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricbri | Structured version Visualization version GIF version | ||
| Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.) |
| Ref | Expression |
|---|---|
| dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
| dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
| dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
| dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
| Ref | Expression |
|---|---|
| gricbri | ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricrcl 47904 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | dfgric2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐴) | |
| 3 | dfgric2.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐵) | |
| 4 | dfgric2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐴) | |
| 5 | dfgric2.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐵) | |
| 6 | 2, 3, 4, 5 | dfgric2 47905 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 8 | 7 | ibi 267 | 1 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5109 dom cdm 5640 “ cima 5643 –1-1-onto→wf1o 6512 ‘cfv 6513 Vtxcvtx 28929 iEdgciedg 28930 ≃𝑔𝑟 cgric 47866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-1o 8436 df-map 8803 df-grim 47868 df-gric 47871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |