![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gricbri | Structured version Visualization version GIF version |
Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.) |
Ref | Expression |
---|---|
dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
Ref | Expression |
---|---|
gricbri | ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gricrcl 47498 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | dfgric2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐴) | |
3 | dfgric2.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐵) | |
4 | dfgric2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐴) | |
5 | dfgric2.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐵) | |
6 | 2, 3, 4, 5 | dfgric2 47499 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
8 | 7 | ibi 266 | 1 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 class class class wbr 5145 dom cdm 5674 “ cima 5677 –1-1-onto→wf1o 6545 ‘cfv 6546 Vtxcvtx 28929 iEdgciedg 28930 ≃𝑔𝑟 cgric 47477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-1o 8488 df-map 8849 df-grim 47479 df-gric 47482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |