| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricbri | Structured version Visualization version GIF version | ||
| Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.) |
| Ref | Expression |
|---|---|
| dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
| dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
| dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
| dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
| Ref | Expression |
|---|---|
| gricbri | ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricrcl 48038 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | dfgric2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐴) | |
| 3 | dfgric2.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐵) | |
| 4 | dfgric2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐴) | |
| 5 | dfgric2.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐵) | |
| 6 | 2, 3, 4, 5 | dfgric2 48039 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 8 | 7 | ibi 267 | 1 ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 class class class wbr 5093 dom cdm 5619 “ cima 5622 –1-1-onto→wf1o 6485 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 ≃𝑔𝑟 cgric 48000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-grim 48002 df-gric 48005 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |