Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgric2 Structured version   Visualization version   GIF version

Theorem dfgric2 48014
Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
Hypotheses
Ref Expression
dfgric2.v 𝑉 = (Vtx‘𝐴)
dfgric2.w 𝑊 = (Vtx‘𝐵)
dfgric2.i 𝐼 = (iEdg‘𝐴)
dfgric2.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
dfgric2 ((𝐴𝑋𝐵𝑌) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)

Proof of Theorem dfgric2
StepHypRef Expression
1 brgric 48011 . . 3 (𝐴𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅)
2 n0 4300 . . 3 ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
31, 2bitri 275 . 2 (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
4 vex 3440 . . . 4 𝑓 ∈ V
5 dfgric2.v . . . . . 6 𝑉 = (Vtx‘𝐴)
6 dfgric2.w . . . . . 6 𝑊 = (Vtx‘𝐵)
7 dfgric2.i . . . . . 6 𝐼 = (iEdg‘𝐴)
8 dfgric2.j . . . . . 6 𝐽 = (iEdg‘𝐵)
95, 6, 7, 8isgrim 47981 . . . . 5 ((𝐴𝑋𝐵𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))))))
10 eqcom 2738 . . . . . . . . 9 ((𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))
1110ralbii 3078 . . . . . . . 8 (∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))
1211anbi2i 623 . . . . . . 7 ((𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))) ↔ (𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
1312exbii 1849 . . . . . 6 (∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
1413anbi2i 623 . . . . 5 ((𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
159, 14bitrdi 287 . . . 4 ((𝐴𝑋𝐵𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
164, 15mp3an3 1452 . . 3 ((𝐴𝑋𝐵𝑌) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1716exbidv 1922 . 2 ((𝐴𝑋𝐵𝑌) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
183, 17bitrid 283 1 ((𝐴𝑋𝐵𝑌) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4280   class class class wbr 5089  dom cdm 5614  cima 5617  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  iEdgciedg 28975   GraphIso cgrim 47974  𝑔𝑟 cgric 47975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-grim 47977  df-gric 47980
This theorem is referenced by:  gricbri  48015  gricushgr  48016  ushggricedg  48026  isubgrgrim  48028
  Copyright terms: Public domain W3C validator