Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgric2 Structured version   Visualization version   GIF version

Theorem dfgric2 47909
Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.)
Hypotheses
Ref Expression
dfgric2.v 𝑉 = (Vtx‘𝐴)
dfgric2.w 𝑊 = (Vtx‘𝐵)
dfgric2.i 𝐼 = (iEdg‘𝐴)
dfgric2.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
dfgric2 ((𝐴𝑋𝐵𝑌) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)

Proof of Theorem dfgric2
StepHypRef Expression
1 brgric 47906 . . 3 (𝐴𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅)
2 n0 4304 . . 3 ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
31, 2bitri 275 . 2 (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
4 vex 3440 . . . 4 𝑓 ∈ V
5 dfgric2.v . . . . . 6 𝑉 = (Vtx‘𝐴)
6 dfgric2.w . . . . . 6 𝑊 = (Vtx‘𝐵)
7 dfgric2.i . . . . . 6 𝐼 = (iEdg‘𝐴)
8 dfgric2.j . . . . . 6 𝐽 = (iEdg‘𝐵)
95, 6, 7, 8isgrim 47876 . . . . 5 ((𝐴𝑋𝐵𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))))))
10 eqcom 2736 . . . . . . . . 9 ((𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))
1110ralbii 3075 . . . . . . . 8 (∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))
1211anbi2i 623 . . . . . . 7 ((𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))) ↔ (𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
1312exbii 1848 . . . . . 6 (∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
1413anbi2i 623 . . . . 5 ((𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔𝑖)) = (𝑓 “ (𝐼𝑖)))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
159, 14bitrdi 287 . . . 4 ((𝐴𝑋𝐵𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
164, 15mp3an3 1452 . . 3 ((𝐴𝑋𝐵𝑌) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
1716exbidv 1921 . 2 ((𝐴𝑋𝐵𝑌) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
183, 17bitrid 283 1 ((𝐴𝑋𝐵𝑌) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3436  c0 4284   class class class wbr 5092  dom cdm 5619  cima 5622  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  iEdgciedg 28942   GraphIso cgrim 47869  𝑔𝑟 cgric 47870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-map 8755  df-grim 47872  df-gric 47875
This theorem is referenced by:  gricbri  47910  gricushgr  47911  ushggricedg  47921  isubgrgrim  47923
  Copyright terms: Public domain W3C validator