![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfgric2 | Structured version Visualization version GIF version |
Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
Ref | Expression |
---|---|
dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
Ref | Expression |
---|---|
dfgric2 | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgric 47765 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅) | |
2 | n0 4376 | . . 3 ⊢ ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) |
4 | vex 3492 | . . . 4 ⊢ 𝑓 ∈ V | |
5 | dfgric2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐴) | |
6 | dfgric2.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐵) | |
7 | dfgric2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐴) | |
8 | dfgric2.j | . . . . . 6 ⊢ 𝐽 = (iEdg‘𝐵) | |
9 | 5, 6, 7, 8 | isgrim 47752 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))))) |
10 | eqcom 2747 | . . . . . . . . 9 ⊢ ((𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) | |
11 | 10 | ralbii 3099 | . . . . . . . 8 ⊢ (∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) |
12 | 11 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ (𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
13 | 12 | exbii 1846 | . . . . . 6 ⊢ (∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
14 | 13 | anbi2i 622 | . . . . 5 ⊢ ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
15 | 9, 14 | bitrdi 287 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
16 | 4, 15 | mp3an3 1450 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
17 | 16 | exbidv 1920 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
18 | 3, 17 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ∅c0 4352 class class class wbr 5166 dom cdm 5700 “ cima 5703 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 iEdgciedg 29032 GraphIso cgrim 47745 ≃𝑔𝑟 cgric 47746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-grim 47748 df-gric 47751 |
This theorem is referenced by: gricbri 47769 gricushgr 47770 ushggricedg 47780 isubgrgrim 47781 |
Copyright terms: Public domain | W3C validator |