| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfgric2 | Structured version Visualization version GIF version | ||
| Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
| Ref | Expression |
|---|---|
| dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
| dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
| dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
| dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
| Ref | Expression |
|---|---|
| dfgric2 | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47912 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅) | |
| 2 | n0 4316 | . . 3 ⊢ ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) |
| 4 | vex 3451 | . . . 4 ⊢ 𝑓 ∈ V | |
| 5 | dfgric2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐴) | |
| 6 | dfgric2.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐵) | |
| 7 | dfgric2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐴) | |
| 8 | dfgric2.j | . . . . . 6 ⊢ 𝐽 = (iEdg‘𝐵) | |
| 9 | 5, 6, 7, 8 | isgrim 47882 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))))) |
| 10 | eqcom 2736 | . . . . . . . . 9 ⊢ ((𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) | |
| 11 | 10 | ralbii 3075 | . . . . . . . 8 ⊢ (∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) |
| 12 | 11 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ (𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
| 13 | 12 | exbii 1848 | . . . . . 6 ⊢ (∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
| 14 | 13 | anbi2i 623 | . . . . 5 ⊢ ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| 15 | 9, 14 | bitrdi 287 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 16 | 4, 15 | mp3an3 1452 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 17 | 16 | exbidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 18 | 3, 17 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∅c0 4296 class class class wbr 5107 dom cdm 5638 “ cima 5641 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 GraphIso cgrim 47875 ≃𝑔𝑟 cgric 47876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-map 8801 df-grim 47878 df-gric 47881 |
| This theorem is referenced by: gricbri 47916 gricushgr 47917 ushggricedg 47927 isubgrgrim 47929 |
| Copyright terms: Public domain | W3C validator |