| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfgric2 | Structured version Visualization version GIF version | ||
| Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
| Ref | Expression |
|---|---|
| dfgric2.v | ⊢ 𝑉 = (Vtx‘𝐴) |
| dfgric2.w | ⊢ 𝑊 = (Vtx‘𝐵) |
| dfgric2.i | ⊢ 𝐼 = (iEdg‘𝐴) |
| dfgric2.j | ⊢ 𝐽 = (iEdg‘𝐵) |
| Ref | Expression |
|---|---|
| dfgric2 | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47892 | . . 3 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅) | |
| 2 | n0 4333 | . . 3 ⊢ ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)) |
| 4 | vex 3468 | . . . 4 ⊢ 𝑓 ∈ V | |
| 5 | dfgric2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐴) | |
| 6 | dfgric2.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐵) | |
| 7 | dfgric2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐴) | |
| 8 | dfgric2.j | . . . . . 6 ⊢ 𝐽 = (iEdg‘𝐵) | |
| 9 | 5, 6, 7, 8 | isgrim 47862 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))))) |
| 10 | eqcom 2743 | . . . . . . . . 9 ⊢ ((𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) | |
| 11 | 10 | ralbii 3083 | . . . . . . . 8 ⊢ (∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))) |
| 12 | 11 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ (𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
| 13 | 12 | exbii 1848 | . . . . . 6 ⊢ (∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
| 14 | 13 | anbi2i 623 | . . . . 5 ⊢ ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑔‘𝑖)) = (𝑓 “ (𝐼‘𝑖)))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
| 15 | 9, 14 | bitrdi 287 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 16 | 4, 15 | mp3an3 1452 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 17 | 16 | exbidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| 18 | 3, 17 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 Vcvv 3464 ∅c0 4313 class class class wbr 5124 dom cdm 5659 “ cima 5662 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 Vtxcvtx 28980 iEdgciedg 28981 GraphIso cgrim 47855 ≃𝑔𝑟 cgric 47856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-1o 8485 df-map 8847 df-grim 47858 df-gric 47861 |
| This theorem is referenced by: gricbri 47896 gricushgr 47897 ushggricedg 47907 isubgrgrim 47909 |
| Copyright terms: Public domain | W3C validator |