![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfur2 | Structured version Visualization version GIF version |
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
dfur2.t | ⊢ · = (.r‘𝑅) |
dfur2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
dfur2 | ⊢ 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | dfur2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 18935 | . 2 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
4 | dfur2.t | . . 3 ⊢ · = (.r‘𝑅) | |
5 | 1, 4 | mgpplusg 18933 | . 2 ⊢ · = (+g‘(mulGrp‘𝑅)) |
6 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
7 | 1, 6 | ringidval 18943 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
8 | 3, 5, 7 | grpidval 17699 | 1 ⊢ 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ℩cio 6187 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 .rcmulr 16395 mulGrpcmgp 18929 1rcur 18941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-plusg 16407 df-0g 16544 df-mgp 18930 df-ur 18942 |
This theorem is referenced by: rngurd 30511 resv1r 30564 |
Copyright terms: Public domain | W3C validator |