| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubpropd | Structured version Visualization version GIF version | ||
| Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| Ref | Expression |
|---|---|
| grpsubpropd | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 3 | eqidd 2736 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
| 4 | eqidd 2736 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 5 | 2 | oveqdr 7433 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 6 | 4, 1, 5 | grpinvpropd 18998 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
| 7 | 6 | fveq1d 6878 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
| 8 | 2, 3, 7 | oveq123d 7426 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 9 | 1, 1, 8 | mpoeq123dv 7482 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 10 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 12 | eqid 2735 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | eqid 2735 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 14 | 10, 11, 12, 13 | grpsubfval 18966 | . 2 ⊢ (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) |
| 15 | eqid 2735 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 16 | eqid 2735 | . . 3 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 17 | eqid 2735 | . . 3 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 18 | eqid 2735 | . . 3 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
| 19 | 15, 16, 17, 18 | grpsubfval 18966 | . 2 ⊢ (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 20 | 9, 14, 19 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 +gcplusg 17271 invgcminusg 18917 -gcsg 18918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-0g 17455 df-minusg 18920 df-sbg 18921 |
| This theorem is referenced by: rlmsub 21154 matsubg 22370 tngngp2 24591 tngngp 24593 tcphsub 25173 ply1divalg2 26096 ttgsub 28858 zhmnrg 33996 |
| Copyright terms: Public domain | W3C validator |