Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
Ref | Expression |
---|---|
grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
Ref | Expression |
---|---|
grpsubpropd | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
3 | eqidd 2739 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
4 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | 2 | oveqdr 7283 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
6 | 4, 1, 5 | grpinvpropd 18565 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
7 | 6 | fveq1d 6758 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
8 | 2, 3, 7 | oveq123d 7276 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
9 | 1, 1, 8 | mpoeq123dv 7328 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
10 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | eqid 2738 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | eqid 2738 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
14 | 10, 11, 12, 13 | grpsubfval 18538 | . 2 ⊢ (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) |
15 | eqid 2738 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
16 | eqid 2738 | . . 3 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
17 | eqid 2738 | . . 3 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
18 | eqid 2738 | . . 3 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
19 | 15, 16, 17, 18 | grpsubfval 18538 | . 2 ⊢ (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
20 | 9, 14, 19 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 invgcminusg 18493 -gcsg 18494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-minusg 18496 df-sbg 18497 |
This theorem is referenced by: rlmsub 20381 matsubg 21489 tngngp2 23722 tngngp 23724 tcphsub 24290 ply1divalg2 25208 ttgsub 27147 zhmnrg 31817 |
Copyright terms: Public domain | W3C validator |