MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubpropd Structured version   Visualization version   GIF version

Theorem grpsubpropd 18595
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
Assertion
Ref Expression
grpsubpropd (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2739 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2739 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
52oveqdr 7283 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
64, 1, 5grpinvpropd 18565 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
76fveq1d 6758 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
82, 3, 7oveq123d 7276 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
91, 1, 8mpoeq123dv 7328 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
10 eqid 2738 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2738 . . 3 (+g𝐺) = (+g𝐺)
12 eqid 2738 . . 3 (invg𝐺) = (invg𝐺)
13 eqid 2738 . . 3 (-g𝐺) = (-g𝐺)
1410, 11, 12, 13grpsubfval 18538 . 2 (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏)))
15 eqid 2738 . . 3 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2738 . . 3 (+g𝐻) = (+g𝐻)
17 eqid 2738 . . 3 (invg𝐻) = (invg𝐻)
18 eqid 2738 . . 3 (-g𝐻) = (-g𝐻)
1915, 16, 17, 18grpsubfval 18538 . 2 (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
209, 14, 193eqtr4g 2804 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  +gcplusg 16888  invgcminusg 18493  -gcsg 18494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-minusg 18496  df-sbg 18497
This theorem is referenced by:  rlmsub  20381  matsubg  21489  tngngp2  23722  tngngp  23724  tcphsub  24290  ply1divalg2  25208  ttgsub  27147  zhmnrg  31817
  Copyright terms: Public domain W3C validator