MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubpropd Structured version   Visualization version   GIF version

Theorem grpsubpropd 19028
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
Assertion
Ref Expression
grpsubpropd (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2736 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2736 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
52oveqdr 7433 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
64, 1, 5grpinvpropd 18998 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
76fveq1d 6878 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
82, 3, 7oveq123d 7426 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
91, 1, 8mpoeq123dv 7482 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
10 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2735 . . 3 (+g𝐺) = (+g𝐺)
12 eqid 2735 . . 3 (invg𝐺) = (invg𝐺)
13 eqid 2735 . . 3 (-g𝐺) = (-g𝐺)
1410, 11, 12, 13grpsubfval 18966 . 2 (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏)))
15 eqid 2735 . . 3 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2735 . . 3 (+g𝐻) = (+g𝐻)
17 eqid 2735 . . 3 (invg𝐻) = (invg𝐻)
18 eqid 2735 . . 3 (-g𝐻) = (-g𝐻)
1915, 16, 17, 18grpsubfval 18966 . 2 (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
209, 14, 193eqtr4g 2795 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228  +gcplusg 17271  invgcminusg 18917  -gcsg 18918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-0g 17455  df-minusg 18920  df-sbg 18921
This theorem is referenced by:  rlmsub  21154  matsubg  22370  tngngp2  24591  tngngp  24593  tcphsub  25173  ply1divalg2  26096  ttgsub  28858  zhmnrg  33996
  Copyright terms: Public domain W3C validator