![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
Ref | Expression |
---|---|
grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
Ref | Expression |
---|---|
grpsubpropd | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
3 | eqidd 2738 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
4 | eqidd 2738 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | 2 | oveqdr 7379 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
6 | 4, 1, 5 | grpinvpropd 18781 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
7 | 6 | fveq1d 6841 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
8 | 2, 3, 7 | oveq123d 7372 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
9 | 1, 1, 8 | mpoeq123dv 7426 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
10 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | eqid 2737 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | eqid 2737 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
14 | 10, 11, 12, 13 | grpsubfval 18754 | . 2 ⊢ (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) |
15 | eqid 2737 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
16 | eqid 2737 | . . 3 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
17 | eqid 2737 | . . 3 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
18 | eqid 2737 | . . 3 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
19 | 15, 16, 17, 18 | grpsubfval 18754 | . 2 ⊢ (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
20 | 9, 14, 19 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6493 (class class class)co 7351 ∈ cmpo 7353 Basecbs 17043 +gcplusg 17093 invgcminusg 18709 -gcsg 18710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-1st 7913 df-2nd 7914 df-0g 17283 df-minusg 18712 df-sbg 18713 |
This theorem is referenced by: rlmsub 20620 matsubg 21733 tngngp2 23968 tngngp 23970 tcphsub 24537 ply1divalg2 25455 ttgsub 27654 zhmnrg 32360 |
Copyright terms: Public domain | W3C validator |