MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgpropd Structured version   Visualization version   GIF version

Theorem mulgpropd 19048
Description: Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropd.m · = (.g𝐺)
mulgpropd.n × = (.g𝐻)
mulgpropd.b1 (𝜑𝐵 = (Base‘𝐺))
mulgpropd.b2 (𝜑𝐵 = (Base‘𝐻))
mulgpropd.i (𝜑𝐵𝐾)
mulgpropd.k ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
mulgpropd.e ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
mulgpropd (𝜑· = × )
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem mulgpropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
2 mulgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐻))
3 mulgpropd.i . . . . . . . . . 10 (𝜑𝐵𝐾)
4 ssel 3940 . . . . . . . . . . 11 (𝐵𝐾 → (𝑥𝐵𝑥𝐾))
5 ssel 3940 . . . . . . . . . . 11 (𝐵𝐾 → (𝑦𝐵𝑦𝐾))
64, 5anim12d 609 . . . . . . . . . 10 (𝐵𝐾 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
73, 6syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
87imp 406 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐾𝑦𝐾))
9 mulgpropd.e . . . . . . . 8 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
108, 9syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
111, 2, 10grpidpropd 18589 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
12113ad2ant1 1133 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (0g𝐺) = (0g𝐻))
13 1zzd 12564 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 1 ∈ ℤ)
14 vex 3451 . . . . . . . . . . . 12 𝑏 ∈ V
1514fvconst2 7178 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((ℕ × {𝑏})‘𝑥) = 𝑏)
16 nnuz 12836 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1716eqcomi 2738 . . . . . . . . . . 11 (ℤ‘1) = ℕ
1815, 17eleq2s 2846 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → ((ℕ × {𝑏})‘𝑥) = 𝑏)
1918adantl 481 . . . . . . . . 9 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) = 𝑏)
2033ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝐵𝐾)
21 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐵)
2220, 21sseldd 3947 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐾)
2322adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑏𝐾)
2419, 23eqeltrd 2828 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) ∈ 𝐾)
25 mulgpropd.k . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
26253ad2antl1 1186 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
2793ad2antl1 1186 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2813, 24, 26, 27seqfeq3 14017 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → seq1((+g𝐺), (ℕ × {𝑏})) = seq1((+g𝐻), (ℕ × {𝑏})))
2928fveq1d 6860 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎))
301, 2, 10grpinvpropd 18947 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
31303ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (invg𝐺) = (invg𝐻))
3228fveq1d 6860 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))
3331, 32fveq12d 6865 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))
3429, 33ifeq12d 4510 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))) = if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))
3512, 34ifeq12d 4510 . . . 4 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3635mpoeq3dva 7466 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
37 eqidd 2730 . . . 4 (𝜑 → ℤ = ℤ)
38 eqidd 2730 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
3937, 1, 38mpoeq123dv 7464 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
40 eqidd 2730 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
4137, 2, 40mpoeq123dv 7464 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
4236, 39, 413eqtr3d 2772 . 2 (𝜑 → (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
43 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
45 eqid 2729 . . 3 (0g𝐺) = (0g𝐺)
46 eqid 2729 . . 3 (invg𝐺) = (invg𝐺)
47 mulgpropd.m . . 3 · = (.g𝐺)
4843, 44, 45, 46, 47mulgfval 19001 . 2 · = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
49 eqid 2729 . . 3 (Base‘𝐻) = (Base‘𝐻)
50 eqid 2729 . . 3 (+g𝐻) = (+g𝐻)
51 eqid 2729 . . 3 (0g𝐻) = (0g𝐻)
52 eqid 2729 . . 3 (invg𝐻) = (invg𝐻)
53 mulgpropd.n . . 3 × = (.g𝐻)
5449, 50, 51, 52, 53mulgfval 19001 . 2 × = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
5542, 48, 543eqtr4g 2789 1 (𝜑· = × )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  ifcif 4488  {csn 4589   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069   < clt 11208  -cneg 11406  cn 12186  cz 12529  cuz 12793  seqcseq 13966  Basecbs 17179  +gcplusg 17220  0gc0g 17402  invgcminusg 18866  .gcmg 18999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-0g 17404  df-minusg 18869  df-mulg 19000
This theorem is referenced by:  mulgass3  20262  coe1tm  22159  ply1coe  22185  evl1expd  22232
  Copyright terms: Public domain W3C validator