![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invrpropd | Structured version Visualization version GIF version |
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
invrpropd | ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
2 | eqid 2732 | . . . . 5 ⊢ ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | |
3 | 1, 2 | unitgrpbas 20195 | . . . 4 ⊢ (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
5 | rngidpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
6 | rngidpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
7 | rngidpropd.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
8 | 5, 6, 7 | unitpropd 20230 | . . . 4 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
9 | eqid 2732 | . . . . 5 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
10 | eqid 2732 | . . . . 5 ⊢ ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) | |
11 | 9, 10 | unitgrpbas 20195 | . . . 4 ⊢ (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
12 | 8, 11 | eqtrdi 2788 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
13 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 1 | unitss 20189 | . . . . . . . 8 ⊢ (Unit‘𝐾) ⊆ (Base‘𝐾) |
15 | 14, 5 | sseqtrrid 4035 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
16 | 15 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
17 | 15 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
18 | 16, 17 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
19 | 18, 7 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
20 | fvex 6904 | . . . . . 6 ⊢ (Unit‘𝐾) ∈ V | |
21 | eqid 2732 | . . . . . . . 8 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
22 | eqid 2732 | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
23 | 21, 22 | mgpplusg 19990 | . . . . . . 7 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
24 | 2, 23 | ressplusg 17234 | . . . . . 6 ⊢ ((Unit‘𝐾) ∈ V → (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
25 | 20, 24 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
26 | 25 | oveqi 7421 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) |
27 | fvex 6904 | . . . . . 6 ⊢ (Unit‘𝐿) ∈ V | |
28 | eqid 2732 | . . . . . . . 8 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
29 | eqid 2732 | . . . . . . . 8 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
30 | 28, 29 | mgpplusg 19990 | . . . . . . 7 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
31 | 10, 30 | ressplusg 17234 | . . . . . 6 ⊢ ((Unit‘𝐿) ∈ V → (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
32 | 27, 31 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
33 | 32 | oveqi 7421 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦) |
34 | 19, 26, 33 | 3eqtr3g 2795 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)) |
35 | 4, 12, 34 | grpinvpropd 18897 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
36 | eqid 2732 | . . 3 ⊢ (invr‘𝐾) = (invr‘𝐾) | |
37 | 1, 2, 36 | invrfval 20202 | . 2 ⊢ (invr‘𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
38 | eqid 2732 | . . 3 ⊢ (invr‘𝐿) = (invr‘𝐿) | |
39 | 9, 10, 38 | invrfval 20202 | . 2 ⊢ (invr‘𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
40 | 35, 37, 39 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 ↾s cress 17172 +gcplusg 17196 .rcmulr 17197 invgcminusg 18819 mulGrpcmgp 19986 Unitcui 20168 invrcinvr 20200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-minusg 18822 df-mgp 19987 df-ur 20004 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |