![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invrpropd | Structured version Visualization version GIF version |
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
invrpropd | ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
2 | eqid 2726 | . . . . 5 ⊢ ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | |
3 | 1, 2 | unitgrpbas 20284 | . . . 4 ⊢ (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
5 | rngidpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
6 | rngidpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
7 | rngidpropd.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
8 | 5, 6, 7 | unitpropd 20319 | . . . 4 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
9 | eqid 2726 | . . . . 5 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
10 | eqid 2726 | . . . . 5 ⊢ ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) | |
11 | 9, 10 | unitgrpbas 20284 | . . . 4 ⊢ (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
12 | 8, 11 | eqtrdi 2782 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
13 | eqid 2726 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 1 | unitss 20278 | . . . . . . . 8 ⊢ (Unit‘𝐾) ⊆ (Base‘𝐾) |
15 | 14, 5 | sseqtrrid 4030 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
16 | 15 | sselda 3977 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
17 | 15 | sselda 3977 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
18 | 16, 17 | anim12dan 618 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
19 | 18, 7 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
20 | fvex 6898 | . . . . . 6 ⊢ (Unit‘𝐾) ∈ V | |
21 | eqid 2726 | . . . . . . . 8 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
22 | eqid 2726 | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
23 | 21, 22 | mgpplusg 20043 | . . . . . . 7 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
24 | 2, 23 | ressplusg 17244 | . . . . . 6 ⊢ ((Unit‘𝐾) ∈ V → (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
25 | 20, 24 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
26 | 25 | oveqi 7418 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) |
27 | fvex 6898 | . . . . . 6 ⊢ (Unit‘𝐿) ∈ V | |
28 | eqid 2726 | . . . . . . . 8 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
29 | eqid 2726 | . . . . . . . 8 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
30 | 28, 29 | mgpplusg 20043 | . . . . . . 7 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
31 | 10, 30 | ressplusg 17244 | . . . . . 6 ⊢ ((Unit‘𝐿) ∈ V → (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
32 | 27, 31 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
33 | 32 | oveqi 7418 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦) |
34 | 19, 26, 33 | 3eqtr3g 2789 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)) |
35 | 4, 12, 34 | grpinvpropd 18943 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
36 | eqid 2726 | . . 3 ⊢ (invr‘𝐾) = (invr‘𝐾) | |
37 | 1, 2, 36 | invrfval 20291 | . 2 ⊢ (invr‘𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
38 | eqid 2726 | . . 3 ⊢ (invr‘𝐿) = (invr‘𝐿) | |
39 | 9, 10, 38 | invrfval 20291 | . 2 ⊢ (invr‘𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
40 | 35, 37, 39 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 ↾s cress 17182 +gcplusg 17206 .rcmulr 17207 invgcminusg 18864 mulGrpcmgp 20039 Unitcui 20257 invrcinvr 20289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-minusg 18867 df-mgp 20040 df-ur 20087 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |