| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrpropd | Structured version Visualization version GIF version | ||
| Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| invrpropd | ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 2 | eqid 2736 | . . . . 5 ⊢ ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | |
| 3 | 1, 2 | unitgrpbas 20347 | . . . 4 ⊢ (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 5 | rngidpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 6 | rngidpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 7 | rngidpropd.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 8 | 5, 6, 7 | unitpropd 20382 | . . . 4 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| 9 | eqid 2736 | . . . . 5 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 10 | eqid 2736 | . . . . 5 ⊢ ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) | |
| 11 | 9, 10 | unitgrpbas 20347 | . . . 4 ⊢ (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 12 | 8, 11 | eqtrdi 2787 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 13 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 1 | unitss 20341 | . . . . . . . 8 ⊢ (Unit‘𝐾) ⊆ (Base‘𝐾) |
| 15 | 14, 5 | sseqtrrid 4007 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
| 16 | 15 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
| 17 | 15 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
| 18 | 16, 17 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 19 | 18, 7 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 20 | fvex 6894 | . . . . . 6 ⊢ (Unit‘𝐾) ∈ V | |
| 21 | eqid 2736 | . . . . . . . 8 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 22 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 23 | 21, 22 | mgpplusg 20109 | . . . . . . 7 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
| 24 | 2, 23 | ressplusg 17310 | . . . . . 6 ⊢ ((Unit‘𝐾) ∈ V → (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 25 | 20, 24 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 26 | 25 | oveqi 7423 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) |
| 27 | fvex 6894 | . . . . . 6 ⊢ (Unit‘𝐿) ∈ V | |
| 28 | eqid 2736 | . . . . . . . 8 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 29 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 30 | 28, 29 | mgpplusg 20109 | . . . . . . 7 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
| 31 | 10, 30 | ressplusg 17310 | . . . . . 6 ⊢ ((Unit‘𝐿) ∈ V → (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 32 | 27, 31 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 33 | 32 | oveqi 7423 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦) |
| 34 | 19, 26, 33 | 3eqtr3g 2794 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)) |
| 35 | 4, 12, 34 | grpinvpropd 19003 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 36 | eqid 2736 | . . 3 ⊢ (invr‘𝐾) = (invr‘𝐾) | |
| 37 | 1, 2, 36 | invrfval 20354 | . 2 ⊢ (invr‘𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 38 | eqid 2736 | . . 3 ⊢ (invr‘𝐿) = (invr‘𝐿) | |
| 39 | 9, 10, 38 | invrfval 20354 | . 2 ⊢ (invr‘𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 40 | 35, 37, 39 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 .rcmulr 17277 invgcminusg 18922 mulGrpcmgp 20105 Unitcui 20320 invrcinvr 20352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-minusg 18925 df-mgp 20106 df-ur 20147 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |