| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrpropd | Structured version Visualization version GIF version | ||
| Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| invrpropd | ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | |
| 3 | 1, 2 | unitgrpbas 20267 | . . . 4 ⊢ (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 5 | rngidpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 6 | rngidpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 7 | rngidpropd.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 8 | 5, 6, 7 | unitpropd 20302 | . . . 4 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 10 | eqid 2729 | . . . . 5 ⊢ ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) | |
| 11 | 9, 10 | unitgrpbas 20267 | . . . 4 ⊢ (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 12 | 8, 11 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 13 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 1 | unitss 20261 | . . . . . . . 8 ⊢ (Unit‘𝐾) ⊆ (Base‘𝐾) |
| 15 | 14, 5 | sseqtrrid 3979 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
| 16 | 15 | sselda 3935 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
| 17 | 15 | sselda 3935 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
| 18 | 16, 17 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 19 | 18, 7 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 20 | fvex 6835 | . . . . . 6 ⊢ (Unit‘𝐾) ∈ V | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 23 | 21, 22 | mgpplusg 20029 | . . . . . . 7 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
| 24 | 2, 23 | ressplusg 17195 | . . . . . 6 ⊢ ((Unit‘𝐾) ∈ V → (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 25 | 20, 24 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 26 | 25 | oveqi 7362 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) |
| 27 | fvex 6835 | . . . . . 6 ⊢ (Unit‘𝐿) ∈ V | |
| 28 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 29 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 30 | 28, 29 | mgpplusg 20029 | . . . . . . 7 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
| 31 | 10, 30 | ressplusg 17195 | . . . . . 6 ⊢ ((Unit‘𝐿) ∈ V → (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 32 | 27, 31 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 33 | 32 | oveqi 7362 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦) |
| 34 | 19, 26, 33 | 3eqtr3g 2787 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)) |
| 35 | 4, 12, 34 | grpinvpropd 18894 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 36 | eqid 2729 | . . 3 ⊢ (invr‘𝐾) = (invr‘𝐾) | |
| 37 | 1, 2, 36 | invrfval 20274 | . 2 ⊢ (invr‘𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 38 | eqid 2729 | . . 3 ⊢ (invr‘𝐿) = (invr‘𝐿) | |
| 39 | 9, 10, 38 | invrfval 20274 | . 2 ⊢ (invr‘𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 40 | 35, 37, 39 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 .rcmulr 17162 invgcminusg 18813 mulGrpcmgp 20025 Unitcui 20240 invrcinvr 20272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-minusg 18816 df-mgp 20026 df-ur 20067 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |