| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrpropd | Structured version Visualization version GIF version | ||
| Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| invrpropd | ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | |
| 3 | 1, 2 | unitgrpbas 20267 | . . . 4 ⊢ (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 5 | rngidpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 6 | rngidpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 7 | rngidpropd.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 8 | 5, 6, 7 | unitpropd 20302 | . . . 4 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 10 | eqid 2729 | . . . . 5 ⊢ ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) | |
| 11 | 9, 10 | unitgrpbas 20267 | . . . 4 ⊢ (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 12 | 8, 11 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 13 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 1 | unitss 20261 | . . . . . . . 8 ⊢ (Unit‘𝐾) ⊆ (Base‘𝐾) |
| 15 | 14, 5 | sseqtrrid 3987 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
| 16 | 15 | sselda 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
| 17 | 15 | sselda 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
| 18 | 16, 17 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 19 | 18, 7 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 20 | fvex 6853 | . . . . . 6 ⊢ (Unit‘𝐾) ∈ V | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 23 | 21, 22 | mgpplusg 20029 | . . . . . . 7 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
| 24 | 2, 23 | ressplusg 17230 | . . . . . 6 ⊢ ((Unit‘𝐾) ∈ V → (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
| 25 | 20, 24 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 26 | 25 | oveqi 7382 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) |
| 27 | fvex 6853 | . . . . . 6 ⊢ (Unit‘𝐿) ∈ V | |
| 28 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 29 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 30 | 28, 29 | mgpplusg 20029 | . . . . . . 7 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
| 31 | 10, 30 | ressplusg 17230 | . . . . . 6 ⊢ ((Unit‘𝐿) ∈ V → (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 32 | 27, 31 | ax-mp 5 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 33 | 32 | oveqi 7382 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦) |
| 34 | 19, 26, 33 | 3eqtr3g 2787 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)) |
| 35 | 4, 12, 34 | grpinvpropd 18923 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
| 36 | eqid 2729 | . . 3 ⊢ (invr‘𝐾) = (invr‘𝐾) | |
| 37 | 1, 2, 36 | invrfval 20274 | . 2 ⊢ (invr‘𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) |
| 38 | eqid 2729 | . . 3 ⊢ (invr‘𝐿) = (invr‘𝐿) | |
| 39 | 9, 10, 38 | invrfval 20274 | . 2 ⊢ (invr‘𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))) |
| 40 | 35, 37, 39 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 .rcmulr 17197 invgcminusg 18842 mulGrpcmgp 20025 Unitcui 20240 invrcinvr 20272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-minusg 18845 df-mgp 20026 df-ur 20067 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |