MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrpropd Structured version   Visualization version   GIF version

Theorem invrpropd 19921
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
invrpropd (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropd
StepHypRef Expression
1 eqid 2739 . . . . 5 (Unit‘𝐾) = (Unit‘𝐾)
2 eqid 2739 . . . . 5 ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾))
31, 2unitgrpbas 19889 . . . 4 (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
43a1i 11 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
5 rngidpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
6 rngidpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
7 rngidpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
85, 6, 7unitpropd 19920 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
9 eqid 2739 . . . . 5 (Unit‘𝐿) = (Unit‘𝐿)
10 eqid 2739 . . . . 5 ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿))
119, 10unitgrpbas 19889 . . . 4 (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
128, 11eqtrdi 2795 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
13 eqid 2739 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 1unitss 19883 . . . . . . . 8 (Unit‘𝐾) ⊆ (Base‘𝐾)
1514, 5sseqtrrid 3978 . . . . . . 7 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
1615sselda 3925 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
1715sselda 3925 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
1816, 17anim12dan 618 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
1918, 7syldan 590 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
20 fvex 6781 . . . . . 6 (Unit‘𝐾) ∈ V
21 eqid 2739 . . . . . . . 8 (mulGrp‘𝐾) = (mulGrp‘𝐾)
22 eqid 2739 . . . . . . . 8 (.r𝐾) = (.r𝐾)
2321, 22mgpplusg 19705 . . . . . . 7 (.r𝐾) = (+g‘(mulGrp‘𝐾))
242, 23ressplusg 16981 . . . . . 6 ((Unit‘𝐾) ∈ V → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
2520, 24ax-mp 5 . . . . 5 (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
2625oveqi 7281 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦)
27 fvex 6781 . . . . . 6 (Unit‘𝐿) ∈ V
28 eqid 2739 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
29 eqid 2739 . . . . . . . 8 (.r𝐿) = (.r𝐿)
3028, 29mgpplusg 19705 . . . . . . 7 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3110, 30ressplusg 16981 . . . . . 6 ((Unit‘𝐿) ∈ V → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
3227, 31ax-mp 5 . . . . 5 (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
3332oveqi 7281 . . . 4 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)
3419, 26, 333eqtr3g 2802 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
354, 12, 34grpinvpropd 18631 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
36 eqid 2739 . . 3 (invr𝐾) = (invr𝐾)
371, 2, 36invrfval 19896 . 2 (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
38 eqid 2739 . . 3 (invr𝐿) = (invr𝐿)
399, 10, 38invrfval 19896 . 2 (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
4035, 37, 393eqtr4g 2804 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cfv 6430  (class class class)co 7268  Basecbs 16893  s cress 16922  +gcplusg 16943  .rcmulr 16944  invgcminusg 18559  mulGrpcmgp 19701  Unitcui 19862  invrcinvr 19894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-0g 17133  df-minusg 18562  df-mgp 19702  df-ur 19719  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator