MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrpropd Structured version   Visualization version   GIF version

Theorem invrpropd 19089
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
invrpropd (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropd
StepHypRef Expression
1 eqid 2778 . . . . 5 (Unit‘𝐾) = (Unit‘𝐾)
2 eqid 2778 . . . . 5 ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾))
31, 2unitgrpbas 19057 . . . 4 (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
43a1i 11 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
5 rngidpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
6 rngidpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
7 rngidpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
85, 6, 7unitpropd 19088 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
9 eqid 2778 . . . . 5 (Unit‘𝐿) = (Unit‘𝐿)
10 eqid 2778 . . . . 5 ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿))
119, 10unitgrpbas 19057 . . . 4 (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
128, 11syl6eq 2830 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
13 eqid 2778 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 1unitss 19051 . . . . . . . 8 (Unit‘𝐾) ⊆ (Base‘𝐾)
1514, 5syl5sseqr 3873 . . . . . . 7 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
1615sselda 3821 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
1715sselda 3821 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
1816, 17anim12dan 612 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
1918, 7syldan 585 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
20 fvex 6461 . . . . . 6 (Unit‘𝐾) ∈ V
21 eqid 2778 . . . . . . . 8 (mulGrp‘𝐾) = (mulGrp‘𝐾)
22 eqid 2778 . . . . . . . 8 (.r𝐾) = (.r𝐾)
2321, 22mgpplusg 18884 . . . . . . 7 (.r𝐾) = (+g‘(mulGrp‘𝐾))
242, 23ressplusg 16389 . . . . . 6 ((Unit‘𝐾) ∈ V → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
2520, 24ax-mp 5 . . . . 5 (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
2625oveqi 6937 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦)
27 fvex 6461 . . . . . 6 (Unit‘𝐿) ∈ V
28 eqid 2778 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
29 eqid 2778 . . . . . . . 8 (.r𝐿) = (.r𝐿)
3028, 29mgpplusg 18884 . . . . . . 7 (.r𝐿) = (+g‘(mulGrp‘𝐿))
3110, 30ressplusg 16389 . . . . . 6 ((Unit‘𝐿) ∈ V → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
3227, 31ax-mp 5 . . . . 5 (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
3332oveqi 6937 . . . 4 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦)
3419, 26, 333eqtr3g 2837 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
354, 12, 34grpinvpropd 17881 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
36 eqid 2778 . . 3 (invr𝐾) = (invr𝐾)
371, 2, 36invrfval 19064 . 2 (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
38 eqid 2778 . . 3 (invr𝐿) = (invr𝐿)
399, 10, 38invrfval 19064 . 2 (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
4035, 37, 393eqtr4g 2839 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cfv 6137  (class class class)co 6924  Basecbs 16259  s cress 16260  +gcplusg 16342  .rcmulr 16343  invgcminusg 17814  mulGrpcmgp 18880  Unitcui 19030  invrcinvr 19062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-0g 16492  df-minusg 17817  df-mgp 18881  df-ur 18893  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator