MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp3 Structured version   Visualization version   GIF version

Theorem tngngp3 24677
Description: Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
tngngp3.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp3.x 𝑋 = (Base‘𝐺)
tngngp3.z 0 = (0g𝐺)
tngngp3.p + = (+g𝐺)
tngngp3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
tngngp3 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦

Proof of Theorem tngngp3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp3.x . . . . 5 𝑋 = (Base‘𝐺)
21fvexi 6920 . . . 4 𝑋 ∈ V
3 fex 7246 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V)
42, 3mpan2 691 . . 3 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
5 tngngp3.t . . . . . . 7 𝑇 = (𝐺 toNrmGrp 𝑁)
65tnggrpr 24676 . . . . . 6 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
7 simp2 1138 . . . . . . . 8 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝐺 ∈ Grp)
8 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝑇) = (Base‘𝑇)
9 eqid 2737 . . . . . . . . . . . . . 14 (norm‘𝑇) = (norm‘𝑇)
10 eqid 2737 . . . . . . . . . . . . . 14 (0g𝑇) = (0g𝑇)
118, 9, 10nmeq0 24631 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
12 eqid 2737 . . . . . . . . . . . . . 14 (invg𝑇) = (invg𝑇)
138, 9, 12nminv 24634 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥))
14 eqid 2737 . . . . . . . . . . . . . . . 16 (+g𝑇) = (+g𝑇)
158, 9, 14nmtri 24639 . . . . . . . . . . . . . . 15 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
16153expa 1119 . . . . . . . . . . . . . 14 (((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
1716ralrimiva 3146 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
1811, 13, 173jca 1129 . . . . . . . . . . . 12 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
1918ralrimiva 3146 . . . . . . . . . . 11 (𝑇 ∈ NrmGrp → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
2019adantl 481 . . . . . . . . . 10 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
21203ad2ant1 1134 . . . . . . . . 9 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
225, 1tngbas 24655 . . . . . . . . . . . . . 14 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
23 tngngp3.p . . . . . . . . . . . . . . 15 + = (+g𝐺)
245, 23tngplusg 24657 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g𝑇))
25 tngngp3.i . . . . . . . . . . . . . . 15 𝐼 = (invg𝐺)
26 eqidd 2738 . . . . . . . . . . . . . . . 16 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝐺))
27 eqid 2737 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
285, 27tngbas 24655 . . . . . . . . . . . . . . . 16 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝑇))
29 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (+g𝐺) = (+g𝐺)
305, 29tngplusg 24657 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
3130oveqd 7448 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ V → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
3326, 28, 32grpinvpropd 19033 . . . . . . . . . . . . . . 15 (𝑁 ∈ V → (invg𝐺) = (invg𝑇))
3425, 33eqtrid 2789 . . . . . . . . . . . . . 14 (𝑁 ∈ V → 𝐼 = (invg𝑇))
3522, 24, 343jca 1129 . . . . . . . . . . . . 13 (𝑁 ∈ V → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
3635adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
37363ad2ant1 1134 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
38 reex 11246 . . . . . . . . . . . . 13 ℝ ∈ V
395, 1, 38tngnm 24672 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
40393adant1 1131 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
41 tngngp3.z . . . . . . . . . . . . . 14 0 = (0g𝐺)
425, 41tng0 24659 . . . . . . . . . . . . 13 (𝑁 ∈ V → 0 = (0g𝑇))
4342adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 0 = (0g𝑇))
44433ad2ant1 1134 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 0 = (0g𝑇))
4537, 40, 443jca 1129 . . . . . . . . . 10 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)))
46 simp1 1137 . . . . . . . . . . . 12 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → 𝑋 = (Base‘𝑇))
47463ad2ant1 1134 . . . . . . . . . . 11 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝑋 = (Base‘𝑇))
48 simp2 1138 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝑁 = (norm‘𝑇))
4948fveq1d 6908 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
5049eqeq1d 2739 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0))
51 simp3 1139 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 0 = (0g𝑇))
5251eqeq2d 2748 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑥 = 0𝑥 = (0g𝑇)))
5350, 52bibi12d 345 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇))))
54 simp3 1139 . . . . . . . . . . . . . . . 16 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → 𝐼 = (invg𝑇))
55543ad2ant1 1134 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝐼 = (invg𝑇))
5655fveq1d 6908 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝐼𝑥) = ((invg𝑇)‘𝑥))
5748, 56fveq12d 6913 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁‘(𝐼𝑥)) = ((norm‘𝑇)‘((invg𝑇)‘𝑥)))
5857, 49eqeq12d 2753 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥)))
59 simp2 1138 . . . . . . . . . . . . . . . . 17 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → + = (+g𝑇))
60593ad2ant1 1134 . . . . . . . . . . . . . . . 16 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → + = (+g𝑇))
6160oveqd 7448 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑥 + 𝑦) = (𝑥(+g𝑇)𝑦))
6248, 61fveq12d 6913 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁‘(𝑥 + 𝑦)) = ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)))
63 fveq1 6905 . . . . . . . . . . . . . . . 16 (𝑁 = (norm‘𝑇) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
64 fveq1 6905 . . . . . . . . . . . . . . . 16 (𝑁 = (norm‘𝑇) → (𝑁𝑦) = ((norm‘𝑇)‘𝑦))
6563, 64oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑁 = (norm‘𝑇) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
66653ad2ant2 1135 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
6762, 66breq12d 5156 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
6847, 67raleqbidv 3346 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
6953, 58, 683anbi123d 1438 . . . . . . . . . . 11 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7047, 69raleqbidv 3346 . . . . . . . . . 10 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7145, 70syl 17 . . . . . . . . 9 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7221, 71mpbird 257 . . . . . . . 8 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
737, 72jca 511 . . . . . . 7 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
74733exp 1120 . . . . . 6 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
756, 74mpd 15 . . . . 5 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
7675expcom 413 . . . 4 (𝑇 ∈ NrmGrp → (𝑁 ∈ V → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
7776com13 88 . . 3 (𝑁:𝑋⟶ℝ → (𝑁 ∈ V → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
784, 77mpd 15 . 2 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
79 eqid 2737 . . . 4 (-g𝐺) = (-g𝐺)
80 simpl 482 . . . . 5 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → 𝐺 ∈ Grp)
8180adantl 481 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝐺 ∈ Grp)
82 simpl 482 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑁:𝑋⟶ℝ)
83 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑁𝑥) = (𝑁𝑎))
8483eqeq1d 2739 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑁𝑥) = 0 ↔ (𝑁𝑎) = 0))
85 eqeq1 2741 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥 = 0𝑎 = 0 ))
8684, 85bibi12d 345 . . . . . . . . . . 11 (𝑥 = 𝑎 → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
87 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝐼𝑥) = (𝐼𝑎))
8887fveq2d 6910 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑁‘(𝐼𝑥)) = (𝑁‘(𝐼𝑎)))
8988, 83eqeq12d 2753 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ (𝑁‘(𝐼𝑎)) = (𝑁𝑎)))
90 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑁‘(𝑥 + 𝑦)) = (𝑁‘(𝑎 + 𝑦)))
9183oveq1d 7446 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑦)))
9290, 91breq12d 5156 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
9392ralbidv 3178 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
9486, 89, 933anbi123d 1438 . . . . . . . . . 10 (𝑥 = 𝑎 → ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ (((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)))))
9594rspccva 3621 . . . . . . . . 9 ((∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝑎𝑋) → (((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
96 simp1 1137 . . . . . . . . 9 ((((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
9795, 96syl 17 . . . . . . . 8 ((∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
9897ex 412 . . . . . . 7 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
9998adantl 481 . . . . . 6 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
10099adantl 481 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
101100imp 406 . . . 4 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
1021, 23, 25, 79grpsubval 19003 . . . . . . 7 ((𝑎𝑋𝑏𝑋) → (𝑎(-g𝐺)𝑏) = (𝑎 + (𝐼𝑏)))
103102adantl 481 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(-g𝐺)𝑏) = (𝑎 + (𝐼𝑏)))
104103fveq2d 6910 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎(-g𝐺)𝑏)) = (𝑁‘(𝑎 + (𝐼𝑏))))
105 3simpc 1151 . . . . . . . . . 10 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
106105ralimi 3083 . . . . . . . . 9 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
107 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
108107ralimi 3083 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼𝑏) → (𝑎 + 𝑦) = (𝑎 + (𝐼𝑏)))
110109fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼𝑏) → (𝑁‘(𝑎 + 𝑦)) = (𝑁‘(𝑎 + (𝐼𝑏))))
111 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼𝑏) → (𝑁𝑦) = (𝑁‘(𝐼𝑏)))
112111oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼𝑏) → ((𝑁𝑎) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
113110, 112breq12d 5156 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼𝑏) → ((𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
11492, 113rspc2v 3633 . . . . . . . . . . . . . . . . 17 ((𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
1151, 25grpinvcl 19005 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑏𝑋) → (𝐼𝑏) ∈ 𝑋)
116115ex 412 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ Grp → (𝑏𝑋 → (𝐼𝑏) ∈ 𝑋))
117116anim2d 612 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋)))
118117imp 406 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋))
119114, 118syl11 33 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
120119expd 415 . . . . . . . . . . . . . . 15 (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))))
121108, 120syl 17 . . . . . . . . . . . . . 14 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))))
122121imp 406 . . . . . . . . . . . . 13 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
123122imp 406 . . . . . . . . . . . 12 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
124 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑁‘(𝐼𝑥)) = (𝑁𝑥))
125124ralimi 3083 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥))
126 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝐼𝑥) = (𝐼𝑏))
127126fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → (𝑁‘(𝐼𝑥)) = (𝑁‘(𝐼𝑏)))
128 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → (𝑁𝑥) = (𝑁𝑏))
129127, 128eqeq12d 2753 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ (𝑁‘(𝐼𝑏)) = (𝑁𝑏)))
130129rspccva 3621 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ 𝑏𝑋) → (𝑁‘(𝐼𝑏)) = (𝑁𝑏))
131130eqcomd 2743 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ 𝑏𝑋) → (𝑁𝑏) = (𝑁‘(𝐼𝑏)))
132131ex 412 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
133125, 132syl 17 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
134133adantr 480 . . . . . . . . . . . . . . 15 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
135134adantld 490 . . . . . . . . . . . . . 14 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
136135imp 406 . . . . . . . . . . . . 13 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁𝑏) = (𝑁‘(𝐼𝑏)))
137136oveq2d 7447 . . . . . . . . . . . 12 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑁𝑎) + (𝑁𝑏)) = ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
138123, 137breqtrrd 5171 . . . . . . . . . . 11 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))
139138ex 412 . . . . . . . . . 10 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
140139ex 412 . . . . . . . . 9 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))))
141106, 140syl 17 . . . . . . . 8 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))))
142141impcom 407 . . . . . . 7 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
143142adantl 481 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
144143imp 406 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))
145104, 144eqbrtrd 5165 . . . 4 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎(-g𝐺)𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
1465, 1, 79, 41, 81, 82, 101, 145tngngpd 24674 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑇 ∈ NrmGrp)
147146ex 412 . 2 (𝑁:𝑋⟶ℝ → ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → 𝑇 ∈ NrmGrp))
14878, 147impbid 212 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158  cle 11296  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953  normcnm 24589  NrmGrpcngp 24590   toNrmGrp ctng 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-tset 17316  df-ds 17319  df-rest 17467  df-topn 17468  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-tng 24597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator