| Step | Hyp | Ref
| Expression |
| 1 | | tngngp3.x |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
| 2 | 1 | fvexi 6920 |
. . . 4
⊢ 𝑋 ∈ V |
| 3 | | fex 7246 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V) |
| 4 | 2, 3 | mpan2 691 |
. . 3
⊢ (𝑁:𝑋⟶ℝ → 𝑁 ∈ V) |
| 5 | | tngngp3.t |
. . . . . . 7
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| 6 | 5 | tnggrpr 24676 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp) |
| 7 | | simp2 1138 |
. . . . . . . 8
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝐺 ∈ Grp) |
| 8 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 9 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(norm‘𝑇) =
(norm‘𝑇) |
| 10 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑇) = (0g‘𝑇) |
| 11 | 8, 9, 10 | nmeq0 24631 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇))) |
| 12 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(invg‘𝑇) = (invg‘𝑇) |
| 13 | 8, 9, 12 | nminv 24634 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥)) |
| 14 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 15 | 8, 9, 14 | nmtri 24639 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))) |
| 16 | 15 | 3expa 1119 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))) |
| 17 | 16 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))) |
| 18 | 11, 13, 17 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 19 | 18 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ NrmGrp →
∀𝑥 ∈
(Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 20 | 19 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) →
∀𝑥 ∈
(Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 21 | 20 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 22 | 5, 1 | tngbas 24655 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ V → 𝑋 = (Base‘𝑇)) |
| 23 | | tngngp3.p |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘𝐺) |
| 24 | 5, 23 | tngplusg 24657 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ V → + =
(+g‘𝑇)) |
| 25 | | tngngp3.i |
. . . . . . . . . . . . . . 15
⊢ 𝐼 = (invg‘𝐺) |
| 26 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ V →
(Base‘𝐺) =
(Base‘𝐺)) |
| 27 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 28 | 5, 27 | tngbas 24655 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ V →
(Base‘𝐺) =
(Base‘𝑇)) |
| 29 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 30 | 5, 29 | tngplusg 24657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ V →
(+g‘𝐺) =
(+g‘𝑇)) |
| 31 | 30 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ V → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ V ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 33 | 26, 28, 32 | grpinvpropd 19033 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ V →
(invg‘𝐺) =
(invg‘𝑇)) |
| 34 | 25, 33 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ V → 𝐼 = (invg‘𝑇)) |
| 35 | 22, 24, 34 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ V → (𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))) |
| 37 | 36 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))) |
| 38 | | reex 11246 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 39 | 5, 1, 38 | tngnm 24672 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇)) |
| 40 | 39 | 3adant1 1131 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇)) |
| 41 | | tngngp3.z |
. . . . . . . . . . . . . 14
⊢ 0 =
(0g‘𝐺) |
| 42 | 5, 41 | tng0 24659 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ V → 0 =
(0g‘𝑇)) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 0 =
(0g‘𝑇)) |
| 44 | 43 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 0 =
(0g‘𝑇)) |
| 45 | 37, 40, 44 | 3jca 1129 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))) |
| 46 | | simp1 1137 |
. . . . . . . . . . . 12
⊢ ((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
→ 𝑋 =
(Base‘𝑇)) |
| 47 | 46 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ 𝑋 =
(Base‘𝑇)) |
| 48 | | simp2 1138 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ 𝑁 =
(norm‘𝑇)) |
| 49 | 48 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝑁‘𝑥) = ((norm‘𝑇)‘𝑥)) |
| 50 | 49 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ ((𝑁‘𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0)) |
| 51 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ 0
= (0g‘𝑇)) |
| 52 | 51 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝑥 = 0 ↔ 𝑥 = (0g‘𝑇))) |
| 53 | 50, 52 | bibi12d 345 |
. . . . . . . . . . . 12
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔
(((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)))) |
| 54 | | simp3 1139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
→ 𝐼 =
(invg‘𝑇)) |
| 55 | 54 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ 𝐼 =
(invg‘𝑇)) |
| 56 | 55 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝐼‘𝑥) =
((invg‘𝑇)‘𝑥)) |
| 57 | 48, 56 | fveq12d 6913 |
. . . . . . . . . . . . 13
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝑁‘(𝐼‘𝑥)) = ((norm‘𝑇)‘((invg‘𝑇)‘𝑥))) |
| 58 | 57, 49 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ↔ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥))) |
| 59 | | simp2 1138 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
→ +
= (+g‘𝑇)) |
| 60 | 59 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ +
= (+g‘𝑇)) |
| 61 | 60 | oveqd 7448 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝑥 + 𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 62 | 48, 61 | fveq12d 6913 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (𝑁‘(𝑥 + 𝑦)) = ((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦))) |
| 63 | | fveq1 6905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 = (norm‘𝑇) → (𝑁‘𝑥) = ((norm‘𝑇)‘𝑥)) |
| 64 | | fveq1 6905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 = (norm‘𝑇) → (𝑁‘𝑦) = ((norm‘𝑇)‘𝑦)) |
| 65 | 63, 64 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 = (norm‘𝑇) → ((𝑁‘𝑥) + (𝑁‘𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))) |
| 66 | 65 | 3ad2ant2 1135 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ ((𝑁‘𝑥) + (𝑁‘𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))) |
| 67 | 62, 66 | breq12d 5156 |
. . . . . . . . . . . . 13
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ↔ ((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 68 | 47, 67 | raleqbidv 3346 |
. . . . . . . . . . . 12
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (∀𝑦 ∈
𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))) |
| 69 | 53, 58, 68 | 3anbi123d 1438 |
. . . . . . . . . . 11
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))) |
| 70 | 47, 69 | raleqbidv 3346 |
. . . . . . . . . 10
⊢ (((𝑋 = (Base‘𝑇) ∧ + =
(+g‘𝑇)
∧ 𝐼 =
(invg‘𝑇))
∧ 𝑁 = (norm‘𝑇) ∧ 0 =
(0g‘𝑇))
→ (∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))) |
| 71 | 45, 70 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑇)) ∧ ((norm‘𝑇)‘((invg‘𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g‘𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))) |
| 72 | 21, 71 | mpbird 257 |
. . . . . . . 8
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 73 | 7, 72 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 74 | 73 | 3exp 1120 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))))) |
| 75 | 6, 74 | mpd 15 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
| 76 | 75 | expcom 413 |
. . . 4
⊢ (𝑇 ∈ NrmGrp → (𝑁 ∈ V → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))))) |
| 77 | 76 | com13 88 |
. . 3
⊢ (𝑁:𝑋⟶ℝ → (𝑁 ∈ V → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))))) |
| 78 | 4, 77 | mpd 15 |
. 2
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
| 79 | | eqid 2737 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 80 | | simpl 482 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → 𝐺 ∈ Grp) |
| 81 | 80 | adantl 481 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) → 𝐺 ∈ Grp) |
| 82 | | simpl 482 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) → 𝑁:𝑋⟶ℝ) |
| 83 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑁‘𝑥) = (𝑁‘𝑎)) |
| 84 | 83 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑁‘𝑥) = 0 ↔ (𝑁‘𝑎) = 0)) |
| 85 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝑥 = 0 ↔ 𝑎 = 0 )) |
| 86 | 84, 85 | bibi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ))) |
| 87 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝐼‘𝑥) = (𝐼‘𝑎)) |
| 88 | 87 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (𝑁‘(𝐼‘𝑥)) = (𝑁‘(𝐼‘𝑎))) |
| 89 | 88, 83 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ↔ (𝑁‘(𝐼‘𝑎)) = (𝑁‘𝑎))) |
| 90 | | fvoveq1 7454 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑁‘(𝑥 + 𝑦)) = (𝑁‘(𝑎 + 𝑦))) |
| 91 | 83 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝑁‘𝑥) + (𝑁‘𝑦)) = ((𝑁‘𝑎) + (𝑁‘𝑦))) |
| 92 | 90, 91 | breq12d 5156 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ↔ (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦)))) |
| 93 | 92 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦)))) |
| 94 | 86, 89, 93 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ (((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼‘𝑎)) = (𝑁‘𝑎) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦))))) |
| 95 | 94 | rspccva 3621 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝑎 ∈ 𝑋) → (((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼‘𝑎)) = (𝑁‘𝑎) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦)))) |
| 96 | | simp1 1137 |
. . . . . . . . 9
⊢ ((((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼‘𝑎)) = (𝑁‘𝑎) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦))) → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 )) |
| 97 | 95, 96 | syl 17 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝑎 ∈ 𝑋) → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 )) |
| 98 | 97 | ex 412 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝑎 ∈ 𝑋 → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ))) |
| 99 | 98 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (𝑎 ∈ 𝑋 → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ))) |
| 100 | 99 | adantl 481 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) → (𝑎 ∈ 𝑋 → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 ))) |
| 101 | 100 | imp 406 |
. . . 4
⊢ (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) ∧ 𝑎 ∈ 𝑋) → ((𝑁‘𝑎) = 0 ↔ 𝑎 = 0 )) |
| 102 | 1, 23, 25, 79 | grpsubval 19003 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎(-g‘𝐺)𝑏) = (𝑎 + (𝐼‘𝑏))) |
| 103 | 102 | adantl 481 |
. . . . . 6
⊢ (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(-g‘𝐺)𝑏) = (𝑎 + (𝐼‘𝑏))) |
| 104 | 103 | fveq2d 6910 |
. . . . 5
⊢ (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎(-g‘𝐺)𝑏)) = (𝑁‘(𝑎 + (𝐼‘𝑏)))) |
| 105 | | 3simpc 1151 |
. . . . . . . . . 10
⊢ ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 106 | 105 | ralimi 3083 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 107 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 108 | 107 | ralimi 3083 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 109 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐼‘𝑏) → (𝑎 + 𝑦) = (𝑎 + (𝐼‘𝑏))) |
| 110 | 109 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐼‘𝑏) → (𝑁‘(𝑎 + 𝑦)) = (𝑁‘(𝑎 + (𝐼‘𝑏)))) |
| 111 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐼‘𝑏) → (𝑁‘𝑦) = (𝑁‘(𝐼‘𝑏))) |
| 112 | 111 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐼‘𝑏) → ((𝑁‘𝑎) + (𝑁‘𝑦)) = ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏)))) |
| 113 | 110, 112 | breq12d 5156 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐼‘𝑏) → ((𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑦)) ↔ (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏))))) |
| 114 | 92, 113 | rspc2v 3633 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑋 ∧ (𝐼‘𝑏) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏))))) |
| 115 | 1, 25 | grpinvcl 19005 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋) → (𝐼‘𝑏) ∈ 𝑋) |
| 116 | 115 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 ∈ Grp → (𝑏 ∈ 𝑋 → (𝐼‘𝑏) ∈ 𝑋)) |
| 117 | 116 | anim2d 612 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ Grp → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎 ∈ 𝑋 ∧ (𝐼‘𝑏) ∈ 𝑋))) |
| 118 | 117 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 ∈ 𝑋 ∧ (𝐼‘𝑏) ∈ 𝑋)) |
| 119 | 114, 118 | syl11 33 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) → ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏))))) |
| 120 | 119 | expd 415 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) → (𝐺 ∈ Grp → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏)))))) |
| 121 | 108, 120 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝐺 ∈ Grp → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏)))))) |
| 122 | 121 | imp 406 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏))))) |
| 123 | 122 | imp 406 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏)))) |
| 124 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥)) |
| 125 | 124 | ralimi 3083 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥)) |
| 126 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑏 → (𝐼‘𝑥) = (𝐼‘𝑏)) |
| 127 | 126 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → (𝑁‘(𝐼‘𝑥)) = (𝑁‘(𝐼‘𝑏))) |
| 128 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → (𝑁‘𝑥) = (𝑁‘𝑏)) |
| 129 | 127, 128 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑏 → ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ↔ (𝑁‘(𝐼‘𝑏)) = (𝑁‘𝑏))) |
| 130 | 129 | rspccva 3621 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑥 ∈
𝑋 (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝐼‘𝑏)) = (𝑁‘𝑏)) |
| 131 | 130 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑥 ∈
𝑋 (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ 𝑏 ∈ 𝑋) → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏))) |
| 132 | 131 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝑋 (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) → (𝑏 ∈ 𝑋 → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏)))) |
| 133 | 125, 132 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝑏 ∈ 𝑋 → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏)))) |
| 134 | 133 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) → (𝑏 ∈ 𝑋 → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏)))) |
| 135 | 134 | adantld 490 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏)))) |
| 136 | 135 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘𝑏) = (𝑁‘(𝐼‘𝑏))) |
| 137 | 136 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑁‘𝑎) + (𝑁‘𝑏)) = ((𝑁‘𝑎) + (𝑁‘(𝐼‘𝑏)))) |
| 138 | 123, 137 | breqtrrd 5171 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏))) |
| 139 | 138 | ex 412 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏)))) |
| 140 | 139 | ex 412 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 ((𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝐺 ∈ Grp → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏))))) |
| 141 | 106, 140 | syl 17 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (𝐺 ∈ Grp → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏))))) |
| 142 | 141 | impcom 407 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏)))) |
| 143 | 142 | adantl 481 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏)))) |
| 144 | 143 | imp 406 |
. . . . 5
⊢ (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎 + (𝐼‘𝑏))) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏))) |
| 145 | 104, 144 | eqbrtrd 5165 |
. . . 4
⊢ (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑁‘(𝑎(-g‘𝐺)𝑏)) ≤ ((𝑁‘𝑎) + (𝑁‘𝑏))) |
| 146 | 5, 1, 79, 41, 81, 82, 101, 145 | tngngpd 24674 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) → 𝑇 ∈ NrmGrp) |
| 147 | 146 | ex 412 |
. 2
⊢ (𝑁:𝑋⟶ℝ → ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → 𝑇 ∈ NrmGrp)) |
| 148 | 78, 147 | impbid 212 |
1
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼‘𝑥)) = (𝑁‘𝑥) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |