MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp3 Structured version   Visualization version   GIF version

Theorem tngngp3 24577
Description: Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
tngngp3.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp3.x 𝑋 = (Base‘𝐺)
tngngp3.z 0 = (0g𝐺)
tngngp3.p + = (+g𝐺)
tngngp3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
tngngp3 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦

Proof of Theorem tngngp3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp3.x . . . . 5 𝑋 = (Base‘𝐺)
21fvexi 6854 . . . 4 𝑋 ∈ V
3 fex 7182 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V)
42, 3mpan2 691 . . 3 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
5 tngngp3.t . . . . . . 7 𝑇 = (𝐺 toNrmGrp 𝑁)
65tnggrpr 24576 . . . . . 6 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
7 simp2 1137 . . . . . . . 8 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝐺 ∈ Grp)
8 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑇) = (Base‘𝑇)
9 eqid 2729 . . . . . . . . . . . . . 14 (norm‘𝑇) = (norm‘𝑇)
10 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑇) = (0g𝑇)
118, 9, 10nmeq0 24539 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
12 eqid 2729 . . . . . . . . . . . . . 14 (invg𝑇) = (invg𝑇)
138, 9, 12nminv 24542 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥))
14 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝑇) = (+g𝑇)
158, 9, 14nmtri 24547 . . . . . . . . . . . . . . 15 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
16153expa 1118 . . . . . . . . . . . . . 14 (((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
1716ralrimiva 3125 . . . . . . . . . . . . 13 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
1811, 13, 173jca 1128 . . . . . . . . . . . 12 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
1918ralrimiva 3125 . . . . . . . . . . 11 (𝑇 ∈ NrmGrp → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
2019adantl 481 . . . . . . . . . 10 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
21203ad2ant1 1133 . . . . . . . . 9 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
225, 1tngbas 24562 . . . . . . . . . . . . . 14 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
23 tngngp3.p . . . . . . . . . . . . . . 15 + = (+g𝐺)
245, 23tngplusg 24563 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g𝑇))
25 tngngp3.i . . . . . . . . . . . . . . 15 𝐼 = (invg𝐺)
26 eqidd 2730 . . . . . . . . . . . . . . . 16 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝐺))
27 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
285, 27tngbas 24562 . . . . . . . . . . . . . . . 16 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝑇))
29 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (+g𝐺) = (+g𝐺)
305, 29tngplusg 24563 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
3130oveqd 7386 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ V → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
3326, 28, 32grpinvpropd 18929 . . . . . . . . . . . . . . 15 (𝑁 ∈ V → (invg𝐺) = (invg𝑇))
3425, 33eqtrid 2776 . . . . . . . . . . . . . 14 (𝑁 ∈ V → 𝐼 = (invg𝑇))
3522, 24, 343jca 1128 . . . . . . . . . . . . 13 (𝑁 ∈ V → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
3635adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
37363ad2ant1 1133 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)))
38 reex 11135 . . . . . . . . . . . . 13 ℝ ∈ V
395, 1, 38tngnm 24572 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
40393adant1 1130 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
41 tngngp3.z . . . . . . . . . . . . . 14 0 = (0g𝐺)
425, 41tng0 24564 . . . . . . . . . . . . 13 (𝑁 ∈ V → 0 = (0g𝑇))
4342adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → 0 = (0g𝑇))
44433ad2ant1 1133 . . . . . . . . . . 11 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 0 = (0g𝑇))
4537, 40, 443jca 1128 . . . . . . . . . 10 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)))
46 simp1 1136 . . . . . . . . . . . 12 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → 𝑋 = (Base‘𝑇))
47463ad2ant1 1133 . . . . . . . . . . 11 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝑋 = (Base‘𝑇))
48 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝑁 = (norm‘𝑇))
4948fveq1d 6842 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
5049eqeq1d 2731 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0))
51 simp3 1138 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 0 = (0g𝑇))
5251eqeq2d 2740 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑥 = 0𝑥 = (0g𝑇)))
5350, 52bibi12d 345 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇))))
54 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → 𝐼 = (invg𝑇))
55543ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → 𝐼 = (invg𝑇))
5655fveq1d 6842 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝐼𝑥) = ((invg𝑇)‘𝑥))
5748, 56fveq12d 6847 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁‘(𝐼𝑥)) = ((norm‘𝑇)‘((invg𝑇)‘𝑥)))
5857, 49eqeq12d 2745 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥)))
59 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) → + = (+g𝑇))
60593ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → + = (+g𝑇))
6160oveqd 7386 . . . . . . . . . . . . . . 15 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑥 + 𝑦) = (𝑥(+g𝑇)𝑦))
6248, 61fveq12d 6847 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (𝑁‘(𝑥 + 𝑦)) = ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)))
63 fveq1 6839 . . . . . . . . . . . . . . . 16 (𝑁 = (norm‘𝑇) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
64 fveq1 6839 . . . . . . . . . . . . . . . 16 (𝑁 = (norm‘𝑇) → (𝑁𝑦) = ((norm‘𝑇)‘𝑦))
6563, 64oveq12d 7387 . . . . . . . . . . . . . . 15 (𝑁 = (norm‘𝑇) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
66653ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
6762, 66breq12d 5115 . . . . . . . . . . . . 13 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
6847, 67raleqbidv 3316 . . . . . . . . . . . 12 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦))))
6953, 58, 683anbi123d 1438 . . . . . . . . . . 11 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7047, 69raleqbidv 3316 . . . . . . . . . 10 (((𝑋 = (Base‘𝑇) ∧ + = (+g𝑇) ∧ 𝐼 = (invg𝑇)) ∧ 𝑁 = (norm‘𝑇) ∧ 0 = (0g𝑇)) → (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7145, 70syl 17 . . . . . . . . 9 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑇)((((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)) ∧ ((norm‘𝑇)‘((invg𝑇)‘𝑥)) = ((norm‘𝑇)‘𝑥) ∧ ∀𝑦 ∈ (Base‘𝑇)((norm‘𝑇)‘(𝑥(+g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))))
7221, 71mpbird 257 . . . . . . . 8 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
737, 72jca 511 . . . . . . 7 (((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) ∧ 𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
74733exp 1119 . . . . . 6 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
756, 74mpd 15 . . . . 5 ((𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp) → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
7675expcom 413 . . . 4 (𝑇 ∈ NrmGrp → (𝑁 ∈ V → (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
7776com13 88 . . 3 (𝑁:𝑋⟶ℝ → (𝑁 ∈ V → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))))
784, 77mpd 15 . 2 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
79 eqid 2729 . . . 4 (-g𝐺) = (-g𝐺)
80 simpl 482 . . . . 5 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → 𝐺 ∈ Grp)
8180adantl 481 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝐺 ∈ Grp)
82 simpl 482 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑁:𝑋⟶ℝ)
83 fveq2 6840 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑁𝑥) = (𝑁𝑎))
8483eqeq1d 2731 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑁𝑥) = 0 ↔ (𝑁𝑎) = 0))
85 eqeq1 2733 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥 = 0𝑎 = 0 ))
8684, 85bibi12d 345 . . . . . . . . . . 11 (𝑥 = 𝑎 → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
87 fveq2 6840 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝐼𝑥) = (𝐼𝑎))
8887fveq2d 6844 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑁‘(𝐼𝑥)) = (𝑁‘(𝐼𝑎)))
8988, 83eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑎 → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ (𝑁‘(𝐼𝑎)) = (𝑁𝑎)))
90 fvoveq1 7392 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑁‘(𝑥 + 𝑦)) = (𝑁‘(𝑎 + 𝑦)))
9183oveq1d 7384 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑦)))
9290, 91breq12d 5115 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
9392ralbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
9486, 89, 933anbi123d 1438 . . . . . . . . . 10 (𝑥 = 𝑎 → ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ (((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)))))
9594rspccva 3584 . . . . . . . . 9 ((∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝑎𝑋) → (((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
96 simp1 1136 . . . . . . . . 9 ((((𝑁𝑎) = 0 ↔ 𝑎 = 0 ) ∧ (𝑁‘(𝐼𝑎)) = (𝑁𝑎) ∧ ∀𝑦𝑋 (𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
9795, 96syl 17 . . . . . . . 8 ((∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
9897ex 412 . . . . . . 7 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
9998adantl 481 . . . . . 6 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
10099adantl 481 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → (𝑎𝑋 → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
101100imp 406 . . . 4 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
1021, 23, 25, 79grpsubval 18899 . . . . . . 7 ((𝑎𝑋𝑏𝑋) → (𝑎(-g𝐺)𝑏) = (𝑎 + (𝐼𝑏)))
103102adantl 481 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(-g𝐺)𝑏) = (𝑎 + (𝐼𝑏)))
104103fveq2d 6844 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎(-g𝐺)𝑏)) = (𝑁‘(𝑎 + (𝐼𝑏))))
105 3simpc 1150 . . . . . . . . . 10 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
106105ralimi 3066 . . . . . . . . 9 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
107 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
108107ralimi 3066 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109 oveq2 7377 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼𝑏) → (𝑎 + 𝑦) = (𝑎 + (𝐼𝑏)))
110109fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼𝑏) → (𝑁‘(𝑎 + 𝑦)) = (𝑁‘(𝑎 + (𝐼𝑏))))
111 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼𝑏) → (𝑁𝑦) = (𝑁‘(𝐼𝑏)))
112111oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼𝑏) → ((𝑁𝑎) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
113110, 112breq12d 5115 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼𝑏) → ((𝑁‘(𝑎 + 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
11492, 113rspc2v 3596 . . . . . . . . . . . . . . . . 17 ((𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
1151, 25grpinvcl 18901 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑏𝑋) → (𝐼𝑏) ∈ 𝑋)
116115ex 412 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ Grp → (𝑏𝑋 → (𝐼𝑏) ∈ 𝑋))
117116anim2d 612 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋)))
118117imp 406 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑋 ∧ (𝐼𝑏) ∈ 𝑋))
119114, 118syl11 33 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
120119expd 415 . . . . . . . . . . . . . . 15 (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))))
121108, 120syl 17 . . . . . . . . . . . . . 14 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))))
122121imp 406 . . . . . . . . . . . . 13 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏)))))
123122imp 406 . . . . . . . . . . . 12 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
124 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑁‘(𝐼𝑥)) = (𝑁𝑥))
125124ralimi 3066 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥))
126 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝐼𝑥) = (𝐼𝑏))
127126fveq2d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → (𝑁‘(𝐼𝑥)) = (𝑁‘(𝐼𝑏)))
128 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → (𝑁𝑥) = (𝑁𝑏))
129127, 128eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ↔ (𝑁‘(𝐼𝑏)) = (𝑁𝑏)))
130129rspccva 3584 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ 𝑏𝑋) → (𝑁‘(𝐼𝑏)) = (𝑁𝑏))
131130eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ 𝑏𝑋) → (𝑁𝑏) = (𝑁‘(𝐼𝑏)))
132131ex 412 . . . . . . . . . . . . . . . . 17 (∀𝑥𝑋 (𝑁‘(𝐼𝑥)) = (𝑁𝑥) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
133125, 132syl 17 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
134133adantr 480 . . . . . . . . . . . . . . 15 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → (𝑏𝑋 → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
135134adantld 490 . . . . . . . . . . . . . 14 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁𝑏) = (𝑁‘(𝐼𝑏))))
136135imp 406 . . . . . . . . . . . . 13 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁𝑏) = (𝑁‘(𝐼𝑏)))
137136oveq2d 7385 . . . . . . . . . . . 12 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑁𝑎) + (𝑁𝑏)) = ((𝑁𝑎) + (𝑁‘(𝐼𝑏))))
138123, 137breqtrrd 5130 . . . . . . . . . . 11 (((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))
139138ex 412 . . . . . . . . . 10 ((∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ 𝐺 ∈ Grp) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
140139ex 412 . . . . . . . . 9 (∀𝑥𝑋 ((𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))))
141106, 140syl 17 . . . . . . . 8 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝐺 ∈ Grp → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))))
142141impcom 407 . . . . . . 7 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
143142adantl 481 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ((𝑎𝑋𝑏𝑋) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏))))
144143imp 406 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 + (𝐼𝑏))) ≤ ((𝑁𝑎) + (𝑁𝑏)))
145104, 144eqbrtrd 5124 . . . 4 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎(-g𝐺)𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
1465, 1, 79, 41, 81, 82, 101, 145tngngpd 24574 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑇 ∈ NrmGrp)
147146ex 412 . 2 (𝑁:𝑋⟶ℝ → ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → 𝑇 ∈ NrmGrp))
14878, 147impbid 212 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑁‘(𝐼𝑥)) = (𝑁𝑥) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 + 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   + caddc 11047  cle 11185  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849  normcnm 24497  NrmGrpcngp 24498   toNrmGrp ctng 24499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-tng 24505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator