Step | Hyp | Ref
| Expression |
1 | | tngngp3.x |
. . . . 5
β’ π = (BaseβπΊ) |
2 | 1 | fvexi 6902 |
. . . 4
β’ π β V |
3 | | fex 7224 |
. . . 4
β’ ((π:πβΆβ β§ π β V) β π β V) |
4 | 2, 3 | mpan2 689 |
. . 3
β’ (π:πβΆβ β π β V) |
5 | | tngngp3.t |
. . . . . . 7
β’ π = (πΊ toNrmGrp π) |
6 | 5 | tnggrpr 24163 |
. . . . . 6
β’ ((π β V β§ π β NrmGrp) β πΊ β Grp) |
7 | | simp2 1137 |
. . . . . . . 8
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β πΊ β Grp) |
8 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Baseβπ) =
(Baseβπ) |
9 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(normβπ) =
(normβπ) |
10 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(0gβπ) = (0gβπ) |
11 | 8, 9, 10 | nmeq0 24118 |
. . . . . . . . . . . . 13
β’ ((π β NrmGrp β§ π₯ β (Baseβπ)) β (((normβπ)βπ₯) = 0 β π₯ = (0gβπ))) |
12 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(invgβπ) = (invgβπ) |
13 | 8, 9, 12 | nminv 24121 |
. . . . . . . . . . . . 13
β’ ((π β NrmGrp β§ π₯ β (Baseβπ)) β ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯)) |
14 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(+gβπ) = (+gβπ) |
15 | 8, 9, 14 | nmtri 24126 |
. . . . . . . . . . . . . . 15
β’ ((π β NrmGrp β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β ((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))) |
16 | 15 | 3expa 1118 |
. . . . . . . . . . . . . 14
β’ (((π β NrmGrp β§ π₯ β (Baseβπ)) β§ π¦ β (Baseβπ)) β ((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))) |
17 | 16 | ralrimiva 3146 |
. . . . . . . . . . . . 13
β’ ((π β NrmGrp β§ π₯ β (Baseβπ)) β βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))) |
18 | 11, 13, 17 | 3jca 1128 |
. . . . . . . . . . . 12
β’ ((π β NrmGrp β§ π₯ β (Baseβπ)) β ((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
19 | 18 | ralrimiva 3146 |
. . . . . . . . . . 11
β’ (π β NrmGrp β
βπ₯ β
(Baseβπ)((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
20 | 19 | adantl 482 |
. . . . . . . . . 10
β’ ((π β V β§ π β NrmGrp) β
βπ₯ β
(Baseβπ)((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
21 | 20 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β βπ₯ β (Baseβπ)((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
22 | 5, 1 | tngbas 24142 |
. . . . . . . . . . . . . 14
β’ (π β V β π = (Baseβπ)) |
23 | | tngngp3.p |
. . . . . . . . . . . . . . 15
β’ + =
(+gβπΊ) |
24 | 5, 23 | tngplusg 24144 |
. . . . . . . . . . . . . 14
β’ (π β V β + =
(+gβπ)) |
25 | | tngngp3.i |
. . . . . . . . . . . . . . 15
β’ πΌ = (invgβπΊ) |
26 | | eqidd 2733 |
. . . . . . . . . . . . . . . 16
β’ (π β V β
(BaseβπΊ) =
(BaseβπΊ)) |
27 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(BaseβπΊ) =
(BaseβπΊ) |
28 | 5, 27 | tngbas 24142 |
. . . . . . . . . . . . . . . 16
β’ (π β V β
(BaseβπΊ) =
(Baseβπ)) |
29 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . 19
β’
(+gβπΊ) = (+gβπΊ) |
30 | 5, 29 | tngplusg 24144 |
. . . . . . . . . . . . . . . . . 18
β’ (π β V β
(+gβπΊ) =
(+gβπ)) |
31 | 30 | oveqd 7422 |
. . . . . . . . . . . . . . . . 17
β’ (π β V β (π₯(+gβπΊ)π¦) = (π₯(+gβπ)π¦)) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β V β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ))) β (π₯(+gβπΊ)π¦) = (π₯(+gβπ)π¦)) |
33 | 26, 28, 32 | grpinvpropd 18894 |
. . . . . . . . . . . . . . 15
β’ (π β V β
(invgβπΊ) =
(invgβπ)) |
34 | 25, 33 | eqtrid 2784 |
. . . . . . . . . . . . . 14
β’ (π β V β πΌ = (invgβπ)) |
35 | 22, 24, 34 | 3jca 1128 |
. . . . . . . . . . . . 13
β’ (π β V β (π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))) |
36 | 35 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β V β§ π β NrmGrp) β (π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))) |
37 | 36 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β (π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))) |
38 | | reex 11197 |
. . . . . . . . . . . . 13
β’ β
β V |
39 | 5, 1, 38 | tngnm 24159 |
. . . . . . . . . . . 12
β’ ((πΊ β Grp β§ π:πβΆβ) β π = (normβπ)) |
40 | 39 | 3adant1 1130 |
. . . . . . . . . . 11
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β π = (normβπ)) |
41 | | tngngp3.z |
. . . . . . . . . . . . . 14
β’ 0 =
(0gβπΊ) |
42 | 5, 41 | tng0 24146 |
. . . . . . . . . . . . 13
β’ (π β V β 0 =
(0gβπ)) |
43 | 42 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β V β§ π β NrmGrp) β 0 =
(0gβπ)) |
44 | 43 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β 0 =
(0gβπ)) |
45 | 37, 40, 44 | 3jca 1128 |
. . . . . . . . . 10
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β ((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))) |
46 | | simp1 1136 |
. . . . . . . . . . . 12
β’ ((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β π =
(Baseβπ)) |
47 | 46 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β π =
(Baseβπ)) |
48 | | simp2 1137 |
. . . . . . . . . . . . . . 15
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β π =
(normβπ)) |
49 | 48 | fveq1d 6890 |
. . . . . . . . . . . . . 14
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (πβπ₯) = ((normβπ)βπ₯)) |
50 | 49 | eqeq1d 2734 |
. . . . . . . . . . . . 13
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β ((πβπ₯) = 0 β ((normβπ)βπ₯) = 0)) |
51 | | simp3 1138 |
. . . . . . . . . . . . . 14
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β 0
= (0gβπ)) |
52 | 51 | eqeq2d 2743 |
. . . . . . . . . . . . 13
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (π₯ = 0 β π₯ = (0gβπ))) |
53 | 50, 52 | bibi12d 345 |
. . . . . . . . . . . 12
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (((πβπ₯) = 0 β π₯ = 0 ) β
(((normβπ)βπ₯) = 0 β π₯ = (0gβπ)))) |
54 | | simp3 1138 |
. . . . . . . . . . . . . . . 16
β’ ((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β πΌ =
(invgβπ)) |
55 | 54 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β πΌ =
(invgβπ)) |
56 | 55 | fveq1d 6890 |
. . . . . . . . . . . . . 14
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (πΌβπ₯) =
((invgβπ)βπ₯)) |
57 | 48, 56 | fveq12d 6895 |
. . . . . . . . . . . . 13
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (πβ(πΌβπ₯)) = ((normβπ)β((invgβπ)βπ₯))) |
58 | 57, 49 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β ((πβ(πΌβπ₯)) = (πβπ₯) β ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯))) |
59 | | simp2 1137 |
. . . . . . . . . . . . . . . . 17
β’ ((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β +
= (+gβπ)) |
60 | 59 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β +
= (+gβπ)) |
61 | 60 | oveqd 7422 |
. . . . . . . . . . . . . . 15
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (π₯ + π¦) = (π₯(+gβπ)π¦)) |
62 | 48, 61 | fveq12d 6895 |
. . . . . . . . . . . . . 14
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (πβ(π₯ + π¦)) = ((normβπ)β(π₯(+gβπ)π¦))) |
63 | | fveq1 6887 |
. . . . . . . . . . . . . . . 16
β’ (π = (normβπ) β (πβπ₯) = ((normβπ)βπ₯)) |
64 | | fveq1 6887 |
. . . . . . . . . . . . . . . 16
β’ (π = (normβπ) β (πβπ¦) = ((normβπ)βπ¦)) |
65 | 63, 64 | oveq12d 7423 |
. . . . . . . . . . . . . . 15
β’ (π = (normβπ) β ((πβπ₯) + (πβπ¦)) = (((normβπ)βπ₯) + ((normβπ)βπ¦))) |
66 | 65 | 3ad2ant2 1134 |
. . . . . . . . . . . . . 14
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β ((πβπ₯) + (πβπ¦)) = (((normβπ)βπ₯) + ((normβπ)βπ¦))) |
67 | 62, 66 | breq12d 5160 |
. . . . . . . . . . . . 13
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β ((πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β ((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
68 | 47, 67 | raleqbidv 3342 |
. . . . . . . . . . . 12
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (βπ¦ β
π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦)))) |
69 | 53, 58, 68 | 3anbi123d 1436 |
. . . . . . . . . . 11
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β ((((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β ((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))))) |
70 | 47, 69 | raleqbidv 3342 |
. . . . . . . . . 10
β’ (((π = (Baseβπ) β§ + =
(+gβπ)
β§ πΌ =
(invgβπ))
β§ π = (normβπ) β§ 0 =
(0gβπ))
β (βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β (Baseβπ)((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))))) |
71 | 45, 70 | syl 17 |
. . . . . . . . 9
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β (βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β (Baseβπ)((((normβπ)βπ₯) = 0 β π₯ = (0gβπ)) β§ ((normβπ)β((invgβπ)βπ₯)) = ((normβπ)βπ₯) β§ βπ¦ β (Baseβπ)((normβπ)β(π₯(+gβπ)π¦)) β€ (((normβπ)βπ₯) + ((normβπ)βπ¦))))) |
72 | 21, 71 | mpbird 256 |
. . . . . . . 8
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) |
73 | 7, 72 | jca 512 |
. . . . . . 7
β’ (((π β V β§ π β NrmGrp) β§ πΊ β Grp β§ π:πβΆβ) β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) |
74 | 73 | 3exp 1119 |
. . . . . 6
β’ ((π β V β§ π β NrmGrp) β (πΊ β Grp β (π:πβΆβ β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))))) |
75 | 6, 74 | mpd 15 |
. . . . 5
β’ ((π β V β§ π β NrmGrp) β (π:πβΆβ β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))))) |
76 | 75 | expcom 414 |
. . . 4
β’ (π β NrmGrp β (π β V β (π:πβΆβ β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))))) |
77 | 76 | com13 88 |
. . 3
β’ (π:πβΆβ β (π β V β (π β NrmGrp β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))))) |
78 | 4, 77 | mpd 15 |
. 2
β’ (π:πβΆβ β (π β NrmGrp β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))))) |
79 | | eqid 2732 |
. . . 4
β’
(-gβπΊ) = (-gβπΊ) |
80 | | simpl 483 |
. . . . 5
β’ ((πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) β πΊ β Grp) |
81 | 80 | adantl 482 |
. . . 4
β’ ((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β πΊ β Grp) |
82 | | simpl 483 |
. . . 4
β’ ((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β π:πβΆβ) |
83 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
84 | 83 | eqeq1d 2734 |
. . . . . . . . . . . 12
β’ (π₯ = π β ((πβπ₯) = 0 β (πβπ) = 0)) |
85 | | eqeq1 2736 |
. . . . . . . . . . . 12
β’ (π₯ = π β (π₯ = 0 β π = 0 )) |
86 | 84, 85 | bibi12d 345 |
. . . . . . . . . . 11
β’ (π₯ = π β (((πβπ₯) = 0 β π₯ = 0 ) β ((πβπ) = 0 β π = 0 ))) |
87 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π₯ = π β (πΌβπ₯) = (πΌβπ)) |
88 | 87 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π₯ = π β (πβ(πΌβπ₯)) = (πβ(πΌβπ))) |
89 | 88, 83 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ (π₯ = π β ((πβ(πΌβπ₯)) = (πβπ₯) β (πβ(πΌβπ)) = (πβπ))) |
90 | | fvoveq1 7428 |
. . . . . . . . . . . . 13
β’ (π₯ = π β (πβ(π₯ + π¦)) = (πβ(π + π¦))) |
91 | 83 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ (π₯ = π β ((πβπ₯) + (πβπ¦)) = ((πβπ) + (πβπ¦))) |
92 | 90, 91 | breq12d 5160 |
. . . . . . . . . . . 12
β’ (π₯ = π β ((πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β (πβ(π + π¦)) β€ ((πβπ) + (πβπ¦)))) |
93 | 92 | ralbidv 3177 |
. . . . . . . . . . 11
β’ (π₯ = π β (βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β βπ¦ β π (πβ(π + π¦)) β€ ((πβπ) + (πβπ¦)))) |
94 | 86, 89, 93 | 3anbi123d 1436 |
. . . . . . . . . 10
β’ (π₯ = π β ((((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (((πβπ) = 0 β π = 0 ) β§ (πβ(πΌβπ)) = (πβπ) β§ βπ¦ β π (πβ(π + π¦)) β€ ((πβπ) + (πβπ¦))))) |
95 | 94 | rspccva 3611 |
. . . . . . . . 9
β’
((βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ π β π) β (((πβπ) = 0 β π = 0 ) β§ (πβ(πΌβπ)) = (πβπ) β§ βπ¦ β π (πβ(π + π¦)) β€ ((πβπ) + (πβπ¦)))) |
96 | | simp1 1136 |
. . . . . . . . 9
β’ ((((πβπ) = 0 β π = 0 ) β§ (πβ(πΌβπ)) = (πβπ) β§ βπ¦ β π (πβ(π + π¦)) β€ ((πβπ) + (πβπ¦))) β ((πβπ) = 0 β π = 0 )) |
97 | 95, 96 | syl 17 |
. . . . . . . 8
β’
((βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ π β π) β ((πβπ) = 0 β π = 0 )) |
98 | 97 | ex 413 |
. . . . . . 7
β’
(βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (π β π β ((πβπ) = 0 β π = 0 ))) |
99 | 98 | adantl 482 |
. . . . . 6
β’ ((πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) β (π β π β ((πβπ) = 0 β π = 0 ))) |
100 | 99 | adantl 482 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β (π β π β ((πβπ) = 0 β π = 0 ))) |
101 | 100 | imp 407 |
. . . 4
β’ (((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β§ π β π) β ((πβπ) = 0 β π = 0 )) |
102 | 1, 23, 25, 79 | grpsubval 18866 |
. . . . . . 7
β’ ((π β π β§ π β π) β (π(-gβπΊ)π) = (π + (πΌβπ))) |
103 | 102 | adantl 482 |
. . . . . 6
β’ (((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β§ (π β π β§ π β π)) β (π(-gβπΊ)π) = (π + (πΌβπ))) |
104 | 103 | fveq2d 6892 |
. . . . 5
β’ (((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β§ (π β π β§ π β π)) β (πβ(π(-gβπΊ)π)) = (πβ(π + (πΌβπ)))) |
105 | | 3simpc 1150 |
. . . . . . . . . 10
β’ ((((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) |
106 | 105 | ralimi 3083 |
. . . . . . . . 9
β’
(βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) |
107 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ (((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) |
108 | 107 | ralimi 3083 |
. . . . . . . . . . . . . . 15
β’
(βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β π βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) |
109 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ = (πΌβπ) β (π + π¦) = (π + (πΌβπ))) |
110 | 109 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ = (πΌβπ) β (πβ(π + π¦)) = (πβ(π + (πΌβπ)))) |
111 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ = (πΌβπ) β (πβπ¦) = (πβ(πΌβπ))) |
112 | 111 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ = (πΌβπ) β ((πβπ) + (πβπ¦)) = ((πβπ) + (πβ(πΌβπ)))) |
113 | 110, 112 | breq12d 5160 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ = (πΌβπ) β ((πβ(π + π¦)) β€ ((πβπ) + (πβπ¦)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ))))) |
114 | 92, 113 | rspc2v 3621 |
. . . . . . . . . . . . . . . . 17
β’ ((π β π β§ (πΌβπ) β π) β (βπ₯ β π βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ))))) |
115 | 1, 25 | grpinvcl 18868 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΊ β Grp β§ π β π) β (πΌβπ) β π) |
116 | 115 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΊ β Grp β (π β π β (πΌβπ) β π)) |
117 | 116 | anim2d 612 |
. . . . . . . . . . . . . . . . . 18
β’ (πΊ β Grp β ((π β π β§ π β π) β (π β π β§ (πΌβπ) β π))) |
118 | 117 | imp 407 |
. . . . . . . . . . . . . . . . 17
β’ ((πΊ β Grp β§ (π β π β§ π β π)) β (π β π β§ (πΌβπ) β π)) |
119 | 114, 118 | syl11 33 |
. . . . . . . . . . . . . . . 16
β’
(βπ₯ β
π βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β ((πΊ β Grp β§ (π β π β§ π β π)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ))))) |
120 | 119 | expd 416 |
. . . . . . . . . . . . . . 15
β’
(βπ₯ β
π βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)) β (πΊ β Grp β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ)))))) |
121 | 108, 120 | syl 17 |
. . . . . . . . . . . . . 14
β’
(βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (πΊ β Grp β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ)))))) |
122 | 121 | imp 407 |
. . . . . . . . . . . . 13
β’
((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ))))) |
123 | 122 | imp 407 |
. . . . . . . . . . . 12
β’
(((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β§ (π β π β§ π β π)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβ(πΌβπ)))) |
124 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
β’ (((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (πβ(πΌβπ₯)) = (πβπ₯)) |
125 | 124 | ralimi 3083 |
. . . . . . . . . . . . . . . . 17
β’
(βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β βπ₯ β π (πβ(πΌβπ₯)) = (πβπ₯)) |
126 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ = π β (πΌβπ₯) = (πΌβπ)) |
127 | 126 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = π β (πβ(πΌβπ₯)) = (πβ(πΌβπ))) |
128 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
129 | 127, 128 | eqeq12d 2748 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = π β ((πβ(πΌβπ₯)) = (πβπ₯) β (πβ(πΌβπ)) = (πβπ))) |
130 | 129 | rspccva 3611 |
. . . . . . . . . . . . . . . . . . 19
β’
((βπ₯ β
π (πβ(πΌβπ₯)) = (πβπ₯) β§ π β π) β (πβ(πΌβπ)) = (πβπ)) |
131 | 130 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . 18
β’
((βπ₯ β
π (πβ(πΌβπ₯)) = (πβπ₯) β§ π β π) β (πβπ) = (πβ(πΌβπ))) |
132 | 131 | ex 413 |
. . . . . . . . . . . . . . . . 17
β’
(βπ₯ β
π (πβ(πΌβπ₯)) = (πβπ₯) β (π β π β (πβπ) = (πβ(πΌβπ)))) |
133 | 125, 132 | syl 17 |
. . . . . . . . . . . . . . . 16
β’
(βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (π β π β (πβπ) = (πβ(πΌβπ)))) |
134 | 133 | adantr 481 |
. . . . . . . . . . . . . . 15
β’
((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β (π β π β (πβπ) = (πβ(πΌβπ)))) |
135 | 134 | adantld 491 |
. . . . . . . . . . . . . 14
β’
((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β ((π β π β§ π β π) β (πβπ) = (πβ(πΌβπ)))) |
136 | 135 | imp 407 |
. . . . . . . . . . . . 13
β’
(((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β§ (π β π β§ π β π)) β (πβπ) = (πβ(πΌβπ))) |
137 | 136 | oveq2d 7421 |
. . . . . . . . . . . 12
β’
(((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β§ (π β π β§ π β π)) β ((πβπ) + (πβπ)) = ((πβπ) + (πβ(πΌβπ)))) |
138 | 123, 137 | breqtrrd 5175 |
. . . . . . . . . . 11
β’
(((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β§ (π β π β§ π β π)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ))) |
139 | 138 | ex 413 |
. . . . . . . . . 10
β’
((βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β§ πΊ β Grp) β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ)))) |
140 | 139 | ex 413 |
. . . . . . . . 9
β’
(βπ₯ β
π ((πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (πΊ β Grp β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ))))) |
141 | 106, 140 | syl 17 |
. . . . . . . 8
β’
(βπ₯ β
π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))) β (πΊ β Grp β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ))))) |
142 | 141 | impcom 408 |
. . . . . . 7
β’ ((πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ)))) |
143 | 142 | adantl 482 |
. . . . . 6
β’ ((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β ((π β π β§ π β π) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ)))) |
144 | 143 | imp 407 |
. . . . 5
β’ (((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β§ (π β π β§ π β π)) β (πβ(π + (πΌβπ))) β€ ((πβπ) + (πβπ))) |
145 | 104, 144 | eqbrtrd 5169 |
. . . 4
β’ (((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β§ (π β π β§ π β π)) β (πβ(π(-gβπΊ)π)) β€ ((πβπ) + (πβπ))) |
146 | 5, 1, 79, 41, 81, 82, 101, 145 | tngngpd 24161 |
. . 3
β’ ((π:πβΆβ β§ (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦))))) β π β NrmGrp) |
147 | 146 | ex 413 |
. 2
β’ (π:πβΆβ β ((πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))) β π β NrmGrp)) |
148 | 78, 147 | impbid 211 |
1
β’ (π:πβΆβ β (π β NrmGrp β (πΊ β Grp β§ βπ₯ β π (((πβπ₯) = 0 β π₯ = 0 ) β§ (πβ(πΌβπ₯)) = (πβπ₯) β§ βπ¦ β π (πβ(π₯ + π¦)) β€ ((πβπ₯) + (πβπ¦)))))) |