MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrp Structured version   Visualization version   GIF version

Theorem psrgrp 19905
Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrp (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrp
Dummy variables 𝑥 𝑠 𝑟 𝑡 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2774 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2774 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2773 . . 3 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2773 . . 3 (+g𝑆) = (+g𝑆)
6 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
763ad2ant1 1114 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
8 simp2 1118 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
9 simp3 1119 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
103, 4, 5, 7, 8, 9psraddcl 19890 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
11 ovex 7007 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
1211rabex 5088 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1312a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
14 eqid 2773 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2773 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 simpr1 1175 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
173, 14, 15, 4, 16psrelbas 19886 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
18 simpr2 1176 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
193, 14, 15, 4, 18psrelbas 19886 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
20 simpr3 1177 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
213, 14, 15, 4, 20psrelbas 19886 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
226adantr 473 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
23 eqid 2773 . . . . . . 7 (+g𝑅) = (+g𝑅)
2414, 23grpass 17913 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2522, 24sylan 572 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2613, 17, 19, 21, 25caofass 7260 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
273, 4, 23, 5, 16, 18psradd 19889 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
2827oveq1d 6990 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧) = ((𝑥𝑓 (+g𝑅)𝑦) ∘𝑓 (+g𝑅)𝑧))
293, 4, 23, 5, 18, 20psradd 19889 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
3029oveq2d 6991 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
3126, 28, 303eqtr4d 2819 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧) = (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)))
32103adant3r3 1165 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
333, 4, 23, 5, 32, 20psradd 19889 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = ((𝑥(+g𝑆)𝑦) ∘𝑓 (+g𝑅)𝑧))
343, 4, 5, 22, 18, 20psraddcl 19890 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
353, 4, 23, 5, 16, 34psradd 19889 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)) = (𝑥𝑓 (+g𝑅)(𝑦(+g𝑆)𝑧)))
3631, 33, 353eqtr4d 2819 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)))
37 psrgrp.i . . 3 (𝜑𝐼𝑉)
38 eqid 2773 . . 3 (0g𝑅) = (0g𝑅)
393, 37, 6, 15, 38, 4psr0cl 19901 . 2 (𝜑 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
4037adantr 473 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
416adantr 473 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
42 simpr 477 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
433, 40, 41, 15, 38, 4, 5, 42psr0lid 19902 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})(+g𝑆)𝑥) = 𝑥)
44 eqid 2773 . . 3 (invg𝑅) = (invg𝑅)
453, 40, 41, 15, 44, 4, 42psrnegcl 19903 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((invg𝑅) ∘ 𝑥) ∈ (Base‘𝑆))
463, 40, 41, 15, 44, 4, 42, 38, 5psrlinv 19904 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (((invg𝑅) ∘ 𝑥)(+g𝑆)𝑥) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
471, 2, 10, 36, 39, 43, 45, 46isgrpd 17926 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  {crab 3087  Vcvv 3410  {csn 4436   × cxp 5402  ccnv 5403  cima 5407  ccom 5408  cfv 6186  (class class class)co 6975  𝑓 cof 7224  𝑚 cmap 8205  Fincfn 8305  cn 11438  0cn0 11706  Basecbs 16338  +gcplusg 16420  0gc0g 16568  Grpcgrp 17904  invgcminusg 17905   mPwSer cmps 19858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-uz 12058  df-fz 12708  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-plusg 16433  df-mulr 16434  df-sca 16436  df-vsca 16437  df-tset 16439  df-0g 16570  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-grp 17907  df-minusg 17908  df-psr 19863
This theorem is referenced by:  psr0  19906  psrneg  19907  psrlmod  19908  psrring  19918  mplsubglem  19941
  Copyright terms: Public domain W3C validator