MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrp Structured version   Visualization version   GIF version

Theorem psrgrp 20636
Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrp (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrp
Dummy variables 𝑥 𝑠 𝑟 𝑡 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2799 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2798 . . 3 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2798 . . 3 (+g𝑆) = (+g𝑆)
6 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
763ad2ant1 1130 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
8 simp2 1134 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
9 simp3 1135 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
103, 4, 5, 7, 8, 9psraddcl 20621 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
11 ovex 7168 . . . . . . 7 (ℕ0m 𝐼) ∈ V
1211rabex 5199 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1312a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
14 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2798 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 simpr1 1191 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
173, 14, 15, 4, 16psrelbas 20617 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
18 simpr2 1192 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
193, 14, 15, 4, 18psrelbas 20617 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
20 simpr3 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
213, 14, 15, 4, 20psrelbas 20617 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
226adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
23 eqid 2798 . . . . . . 7 (+g𝑅) = (+g𝑅)
2414, 23grpass 18104 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2522, 24sylan 583 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2613, 17, 19, 21, 25caofass 7423 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
273, 4, 23, 5, 16, 18psradd 20620 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥f (+g𝑅)𝑦))
2827oveq1d 7150 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧) = ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧))
293, 4, 23, 5, 18, 20psradd 20620 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦f (+g𝑅)𝑧))
3029oveq2d 7151 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
3126, 28, 303eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧) = (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)))
32103adant3r3 1181 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
333, 4, 23, 5, 32, 20psradd 20620 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧))
343, 4, 5, 22, 18, 20psraddcl 20621 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
353, 4, 23, 5, 16, 34psradd 20620 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)) = (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)))
3631, 33, 353eqtr4d 2843 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)))
37 psrgrp.i . . 3 (𝜑𝐼𝑉)
38 eqid 2798 . . 3 (0g𝑅) = (0g𝑅)
393, 37, 6, 15, 38, 4psr0cl 20632 . 2 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
4037adantr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
416adantr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
42 simpr 488 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
433, 40, 41, 15, 38, 4, 5, 42psr0lid 20633 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})(+g𝑆)𝑥) = 𝑥)
44 eqid 2798 . . 3 (invg𝑅) = (invg𝑅)
453, 40, 41, 15, 44, 4, 42psrnegcl 20634 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((invg𝑅) ∘ 𝑥) ∈ (Base‘𝑆))
463, 40, 41, 15, 44, 4, 42, 38, 5psrlinv 20635 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (((invg𝑅) ∘ 𝑥)(+g𝑆)𝑥) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
471, 2, 10, 36, 39, 43, 45, 46isgrpd 18117 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  {csn 4525   × cxp 5517  ccnv 5518  cima 5522  ccom 5523  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389  Fincfn 8492  cn 11625  0cn0 11885  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-psr 20594
This theorem is referenced by:  psr0  20637  psrneg  20638  psrlmod  20639  psrring  20649  mplsubglem  20672
  Copyright terms: Public domain W3C validator