| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | psrgrp.r | . . 3
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 2 |  | ovex 7464 | . . . 4
⊢
(ℕ0 ↑m 𝐼) ∈ V | 
| 3 | 2 | rabex 5339 | . . 3
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V | 
| 4 |  | eqid 2737 | . . . 4
⊢ (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}) | 
| 5 | 4 | pwsgrp 19070 | . . 3
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ (𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) | 
| 6 | 1, 3, 5 | sylancl 586 | . 2
⊢ (𝜑 → (𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) | 
| 7 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 8 | 4, 7 | pwsbas 17532 | . . . 4
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ ((Base‘𝑅)
↑m {𝑓
∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 9 | 1, 3, 8 | sylancl 586 | . . 3
⊢ (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 10 |  | psrgrp.s | . . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 11 |  | eqid 2737 | . . . . 5
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 12 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 13 |  | psrgrp.i | . . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 14 | 10, 7, 11, 12, 13 | psrbas 21953 | . . . 4
⊢ (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) | 
| 15 | 14 | eqcomd 2743 | . . 3
⊢ (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘𝑆)) | 
| 16 |  | eqid 2737 | . . . . 5
⊢
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) | 
| 17 | 1 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Grp) | 
| 18 | 3 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) | 
| 19 | 9 | eleq2d 2827 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) | 
| 20 | 19 | biimpa 476 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 21 | 20 | adantrr 717 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 22 | 9 | eleq2d 2827 | . . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) | 
| 23 | 22 | biimpa 476 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 24 | 23 | adantrl 716 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 25 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 26 |  | eqid 2737 | . . . . 5
⊢
(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(+g‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) | 
| 27 | 4, 16, 17, 18, 21, 24, 25, 26 | pwsplusgval 17535 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) | 
| 28 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 29 | 14 | eleq2d 2827 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 30 | 29 | biimpar 477 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆)) | 
| 31 | 30 | adantrr 717 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆)) | 
| 32 | 14 | eleq2d 2827 | . . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) | 
| 33 | 32 | biimpar 477 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆)) | 
| 34 | 33 | adantrl 716 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆)) | 
| 35 | 10, 12, 25, 28, 31, 34 | psradd 21957 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘𝑆)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) | 
| 36 | 27, 35 | eqtr4d 2780 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g‘𝑆)𝑦)) | 
| 37 | 9, 15, 36 | grppropd 18969 | . 2
⊢ (𝜑 → ((𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈ Grp
↔ 𝑆 ∈
Grp)) | 
| 38 | 6, 37 | mpbid 232 | 1
⊢ (𝜑 → 𝑆 ∈ Grp) |