Step | Hyp | Ref
| Expression |
1 | | psrgrp.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Grp) |
2 | | ovex 7390 |
. . . 4
⊢
(ℕ0 ↑m 𝐼) ∈ V |
3 | 2 | rabex 5289 |
. . 3
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
4 | | eqid 2736 |
. . . 4
⊢ (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
5 | 4 | pwsgrp 18859 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ (𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) |
6 | 1, 3, 5 | sylancl 586 |
. 2
⊢ (𝜑 → (𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) |
7 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 4, 7 | pwsbas 17369 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ ((Base‘𝑅)
↑m {𝑓
∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
9 | 1, 3, 8 | sylancl 586 |
. . 3
⊢ (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
10 | | psrgrp.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
11 | | eqid 2736 |
. . . . 5
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
12 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
13 | | psrgrp.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
14 | 10, 7, 11, 12, 13 | psrbas 21346 |
. . . 4
⊢ (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
15 | 14 | eqcomd 2742 |
. . 3
⊢ (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘𝑆)) |
16 | | eqid 2736 |
. . . . 5
⊢
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
17 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Grp) |
18 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) |
19 | 9 | eleq2d 2823 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) |
20 | 19 | biimpa 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
21 | 20 | adantrr 715 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
22 | 9 | eleq2d 2823 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) |
23 | 22 | biimpa 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
24 | 23 | adantrl 714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
25 | | eqid 2736 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
26 | | eqid 2736 |
. . . . 5
⊢
(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(+g‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
27 | 4, 16, 17, 18, 21, 24, 25, 26 | pwsplusgval 17372 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
28 | | eqid 2736 |
. . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) |
29 | 14 | eleq2d 2823 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
30 | 29 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆)) |
31 | 30 | adantrr 715 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆)) |
32 | 14 | eleq2d 2823 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
33 | 32 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆)) |
34 | 33 | adantrl 714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆)) |
35 | 10, 12, 25, 28, 31, 34 | psradd 21350 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘𝑆)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
36 | 27, 35 | eqtr4d 2779 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g‘𝑆)𝑦)) |
37 | 9, 15, 36 | grppropd 18765 |
. 2
⊢ (𝜑 → ((𝑅 ↑s {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈ Grp
↔ 𝑆 ∈
Grp)) |
38 | 6, 37 | mpbid 231 |
1
⊢ (𝜑 → 𝑆 ∈ Grp) |