MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrp Structured version   Visualization version   GIF version

Theorem psrgrp 21516
Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrp (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrp
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrgrp.r . . 3 (𝜑𝑅 ∈ Grp)
2 ovex 7441 . . . 4 (ℕ0m 𝐼) ∈ V
32rabex 5332 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4 eqid 2732 . . . 4 (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
54pwsgrp 18934 . . 3 ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp)
61, 3, 5sylancl 586 . 2 (𝜑 → (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp)
7 eqid 2732 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
84, 7pwsbas 17432 . . . 4 ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
91, 3, 8sylancl 586 . . 3 (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
10 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2732 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 eqid 2732 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
13 psrgrp.i . . . . 5 (𝜑𝐼𝑉)
1410, 7, 11, 12, 13psrbas 21496 . . . 4 (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
1514eqcomd 2738 . . 3 (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘𝑆))
16 eqid 2732 . . . . 5 (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
171adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Grp)
183a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
199eleq2d 2819 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2019biimpa 477 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2120adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
229eleq2d 2819 . . . . . . 7 (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2322biimpa 477 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2423adantrl 714 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
25 eqid 2732 . . . . 5 (+g𝑅) = (+g𝑅)
26 eqid 2732 . . . . 5 (+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
274, 16, 17, 18, 21, 24, 25, 26pwsplusgval 17435 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥f (+g𝑅)𝑦))
28 eqid 2732 . . . . 5 (+g𝑆) = (+g𝑆)
2914eleq2d 2819 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3029biimpar 478 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆))
3130adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆))
3214eleq2d 2819 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3332biimpar 478 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆))
3433adantrl 714 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆))
3510, 12, 25, 28, 31, 34psradd 21500 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g𝑆)𝑦) = (𝑥f (+g𝑅)𝑦))
3627, 35eqtr4d 2775 . . 3 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g𝑆)𝑦))
379, 15, 36grppropd 18836 . 2 (𝜑 → ((𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp ↔ 𝑆 ∈ Grp))
386, 37mpbid 231 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  ccnv 5675  cima 5679  cfv 6543  (class class class)co 7408  f cof 7667  m cmap 8819  Fincfn 8938  cn 12211  0cn0 12471  Basecbs 17143  +gcplusg 17196  s cpws 17391  Grpcgrp 18818   mPwSer cmps 21456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-pws 17394  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-psr 21461
This theorem is referenced by:  psr0  21518  psrneg  21519  psrlmod  21520  psrring  21530  mplsubglem  21557
  Copyright terms: Public domain W3C validator