| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppggrpb | Structured version Visualization version GIF version | ||
| Description: Bidirectional form of oppggrp 19273. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppggrpb | ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | . . 3 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | 1 | oppggrp 19273 | . 2 ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) |
| 3 | eqid 2729 | . . . 4 ⊢ (oppg‘𝑂) = (oppg‘𝑂) | |
| 4 | 3 | oppggrp 19273 | . . 3 ⊢ (𝑂 ∈ Grp → (oppg‘𝑂) ∈ Grp) |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 1, 5 | oppgbas 19267 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 7 | 3, 6 | oppgbas 19267 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppg‘𝑂)) |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppg‘𝑂))) |
| 9 | eqidd 2730 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘(oppg‘𝑂)) = (+g‘(oppg‘𝑂)) | |
| 12 | 10, 3, 11 | oppgplus 19265 | . . . . . . 7 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑦(+g‘𝑂)𝑥) |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 14 | 13, 1, 10 | oppgplus 19265 | . . . . . . 7 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
| 15 | 12, 14 | eqtri 2752 | . . . . . 6 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦)) |
| 17 | 8, 9, 16 | grppropd 18867 | . . . 4 ⊢ (⊤ → ((oppg‘𝑂) ∈ Grp ↔ 𝑅 ∈ Grp)) |
| 18 | 17 | mptru 1547 | . . 3 ⊢ ((oppg‘𝑂) ∈ Grp ↔ 𝑅 ∈ Grp) |
| 19 | 4, 18 | sylib 218 | . 2 ⊢ (𝑂 ∈ Grp → 𝑅 ∈ Grp) |
| 20 | 2, 19 | impbii 209 | 1 ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 +gcplusg 17198 Grpcgrp 18849 oppgcoppg 19261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-tpos 8183 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-plusg 17211 df-0g 17382 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-grp 18852 df-minusg 18853 df-oppg 19262 |
| This theorem is referenced by: oppgsubg 19279 ogrpaddltrbid 20057 |
| Copyright terms: Public domain | W3C validator |