MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmpropd Structured version   Visualization version   GIF version

Theorem ghmpropd 19181
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a (𝜑𝐵 = (Base‘𝐽))
ghmpropd.b (𝜑𝐶 = (Base‘𝐾))
ghmpropd.c (𝜑𝐵 = (Base‘𝐿))
ghmpropd.d (𝜑𝐶 = (Base‘𝑀))
ghmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
ghmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
ghmpropd (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ghmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 ghmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 ghmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 18881 . . . . 5 (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp))
5 ghmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
6 ghmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
7 ghmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
85, 6, 7grppropd 18881 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp))
94, 8anbi12d 630 . . . 4 (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)))
101, 5, 2, 6, 3, 7mhmpropd 18722 . . . . 5 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
1110eleq2d 2813 . . . 4 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
129, 11anbi12d 630 . . 3 (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))))
13 ghmgrp1 19143 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp)
14 ghmgrp2 19144 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp)
1513, 14jca 511 . . . 4 (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp))
16 ghmmhmb 19152 . . . . 5 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾))
1716eleq2d 2813 . . . 4 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾)))
1815, 17biadanii 819 . . 3 (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)))
19 ghmgrp1 19143 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp)
20 ghmgrp2 19144 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp)
2119, 20jca 511 . . . 4 (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))
22 ghmmhmb 19152 . . . . 5 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀))
2322eleq2d 2813 . . . 4 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2421, 23biadanii 819 . . 3 (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2512, 18, 243bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2625eqrdv 2724 1 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206   MndHom cmhm 18711  Grpcgrp 18863   GrpHom cghm 19138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8824  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-grp 18866  df-ghm 19139
This theorem is referenced by:  rhmpropd  20511  lmhmpropd  20921  evls1maplmhm  33279
  Copyright terms: Public domain W3C validator