MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmpropd Structured version   Visualization version   GIF version

Theorem ghmpropd 18388
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a (𝜑𝐵 = (Base‘𝐽))
ghmpropd.b (𝜑𝐶 = (Base‘𝐾))
ghmpropd.c (𝜑𝐵 = (Base‘𝐿))
ghmpropd.d (𝜑𝐶 = (Base‘𝑀))
ghmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
ghmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
ghmpropd (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ghmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 ghmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 ghmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 18110 . . . . 5 (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp))
5 ghmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
6 ghmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
7 ghmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
85, 6, 7grppropd 18110 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp))
94, 8anbi12d 633 . . . 4 (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)))
101, 5, 2, 6, 3, 7mhmpropd 17954 . . . . 5 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
1110eleq2d 2875 . . . 4 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
129, 11anbi12d 633 . . 3 (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))))
13 ghmgrp1 18352 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp)
14 ghmgrp2 18353 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp)
1513, 14jca 515 . . . 4 (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp))
16 ghmmhmb 18361 . . . . 5 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾))
1716eleq2d 2875 . . . 4 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾)))
1815, 17biadanii 821 . . 3 (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)))
19 ghmgrp1 18352 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp)
20 ghmgrp2 18353 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp)
2119, 20jca 515 . . . 4 (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))
22 ghmmhmb 18361 . . . . 5 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀))
2322eleq2d 2875 . . . 4 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2421, 23biadanii 821 . . 3 (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2512, 18, 243bitr4g 317 . 2 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2625eqrdv 2796 1 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557   MndHom cmhm 17946  Grpcgrp 18095   GrpHom cghm 18347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348
This theorem is referenced by:  rhmpropd  19564  lmhmpropd  19838
  Copyright terms: Public domain W3C validator