| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmpropd | Structured version Visualization version GIF version | ||
| Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| ghmpropd.a | ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
| ghmpropd.b | ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
| ghmpropd.c | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| ghmpropd.d | ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
| ghmpropd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| ghmpropd.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
| Ref | Expression |
|---|---|
| ghmpropd | ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | |
| 2 | ghmpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | ghmpropd.e | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | grppropd 18868 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| 5 | ghmpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | |
| 6 | ghmpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | |
| 7 | ghmpropd.f | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | |
| 8 | 5, 6, 7 | grppropd 18868 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp)) |
| 9 | 4, 8 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))) |
| 10 | 1, 5, 2, 6, 3, 7 | mhmpropd 18704 | . . . . 5 ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |
| 11 | 10 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
| 12 | 9, 11 | anbi12d 632 | . . 3 ⊢ (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))) |
| 13 | ghmgrp1 19134 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp) | |
| 14 | ghmgrp2 19135 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp) | |
| 15 | 13, 14 | jca 511 | . . . 4 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp)) |
| 16 | ghmmhmb 19143 | . . . . 5 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾)) | |
| 17 | 16 | eleq2d 2819 | . . . 4 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
| 18 | 15, 17 | biadanii 821 | . . 3 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
| 19 | ghmgrp1 19134 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp) | |
| 20 | ghmgrp2 19135 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp) | |
| 21 | 19, 20 | jca 511 | . . . 4 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)) |
| 22 | ghmmhmb 19143 | . . . . 5 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀)) | |
| 23 | 22 | eleq2d 2819 | . . . 4 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
| 24 | 21, 23 | biadanii 821 | . . 3 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
| 25 | 12, 18, 24 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
| 26 | 25 | eqrdv 2731 | 1 ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 MndHom cmhm 18693 Grpcgrp 18850 GrpHom cghm 19128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-grp 18853 df-ghm 19129 |
| This theorem is referenced by: rhmpropd 20528 lmhmpropd 21011 evls1maplmhm 22295 |
| Copyright terms: Public domain | W3C validator |