Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmpropd | Structured version Visualization version GIF version |
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ghmpropd.a | ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
ghmpropd.b | ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
ghmpropd.c | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ghmpropd.d | ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
ghmpropd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
ghmpropd.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
Ref | Expression |
---|---|
ghmpropd | ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | |
2 | ghmpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ghmpropd.e | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | 1, 2, 3 | grppropd 18667 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp)) |
5 | ghmpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | |
6 | ghmpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | |
7 | ghmpropd.f | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | |
8 | 5, 6, 7 | grppropd 18667 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp)) |
9 | 4, 8 | anbi12d 631 | . . . 4 ⊢ (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))) |
10 | 1, 5, 2, 6, 3, 7 | mhmpropd 18510 | . . . . 5 ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |
11 | 10 | eleq2d 2822 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
12 | 9, 11 | anbi12d 631 | . . 3 ⊢ (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))) |
13 | ghmgrp1 18909 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp) | |
14 | ghmgrp2 18910 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp) | |
15 | 13, 14 | jca 512 | . . . 4 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp)) |
16 | ghmmhmb 18918 | . . . . 5 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾)) | |
17 | 16 | eleq2d 2822 | . . . 4 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
18 | 15, 17 | biadanii 819 | . . 3 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
19 | ghmgrp1 18909 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp) | |
20 | ghmgrp2 18910 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp) | |
21 | 19, 20 | jca 512 | . . . 4 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)) |
22 | ghmmhmb 18918 | . . . . 5 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀)) | |
23 | 22 | eleq2d 2822 | . . . 4 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
24 | 21, 23 | biadanii 819 | . . 3 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
25 | 12, 18, 24 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
26 | 25 | eqrdv 2734 | 1 ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 +gcplusg 17036 MndHom cmhm 18502 Grpcgrp 18650 GrpHom cghm 18904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-map 8666 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-mhm 18504 df-grp 18653 df-ghm 18905 |
This theorem is referenced by: rhmpropd 20139 lmhmpropd 20415 |
Copyright terms: Public domain | W3C validator |