![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmpropd | Structured version Visualization version GIF version |
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ghmpropd.a | ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
ghmpropd.b | ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
ghmpropd.c | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ghmpropd.d | ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
ghmpropd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
ghmpropd.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
Ref | Expression |
---|---|
ghmpropd | ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | |
2 | ghmpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ghmpropd.e | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | 1, 2, 3 | grppropd 18915 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp)) |
5 | ghmpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | |
6 | ghmpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | |
7 | ghmpropd.f | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | |
8 | 5, 6, 7 | grppropd 18915 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp)) |
9 | 4, 8 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))) |
10 | 1, 5, 2, 6, 3, 7 | mhmpropd 18756 | . . . . 5 ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |
11 | 10 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
12 | 9, 11 | anbi12d 630 | . . 3 ⊢ (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))) |
13 | ghmgrp1 19179 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp) | |
14 | ghmgrp2 19180 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp) | |
15 | 13, 14 | jca 510 | . . . 4 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp)) |
16 | ghmmhmb 19188 | . . . . 5 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾)) | |
17 | 16 | eleq2d 2815 | . . . 4 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
18 | 15, 17 | biadanii 820 | . . 3 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
19 | ghmgrp1 19179 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp) | |
20 | ghmgrp2 19180 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp) | |
21 | 19, 20 | jca 510 | . . . 4 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)) |
22 | ghmmhmb 19188 | . . . . 5 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀)) | |
23 | 22 | eleq2d 2815 | . . . 4 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
24 | 21, 23 | biadanii 820 | . . 3 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
25 | 12, 18, 24 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
26 | 25 | eqrdv 2726 | 1 ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 MndHom cmhm 18745 Grpcgrp 18897 GrpHom cghm 19174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-map 8853 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-grp 18900 df-ghm 19175 |
This theorem is referenced by: rhmpropd 20555 lmhmpropd 20965 evls1maplmhm 22303 |
Copyright terms: Public domain | W3C validator |