![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmpropd | Structured version Visualization version GIF version |
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ghmpropd.a | ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
ghmpropd.b | ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
ghmpropd.c | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
ghmpropd.d | ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
ghmpropd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
ghmpropd.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
Ref | Expression |
---|---|
ghmpropd | ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | |
2 | ghmpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | ghmpropd.e | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | 1, 2, 3 | grppropd 18837 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp)) |
5 | ghmpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | |
6 | ghmpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | |
7 | ghmpropd.f | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | |
8 | 5, 6, 7 | grppropd 18837 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp)) |
9 | 4, 8 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))) |
10 | 1, 5, 2, 6, 3, 7 | mhmpropd 18678 | . . . . 5 ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |
11 | 10 | eleq2d 2820 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
12 | 9, 11 | anbi12d 632 | . . 3 ⊢ (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))) |
13 | ghmgrp1 19094 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp) | |
14 | ghmgrp2 19095 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp) | |
15 | 13, 14 | jca 513 | . . . 4 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp)) |
16 | ghmmhmb 19103 | . . . . 5 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾)) | |
17 | 16 | eleq2d 2820 | . . . 4 ⊢ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
18 | 15, 17 | biadanii 821 | . . 3 ⊢ (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾))) |
19 | ghmgrp1 19094 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp) | |
20 | ghmgrp2 19095 | . . . . 5 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp) | |
21 | 19, 20 | jca 513 | . . . 4 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)) |
22 | ghmmhmb 19103 | . . . . 5 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀)) | |
23 | 22 | eleq2d 2820 | . . . 4 ⊢ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
24 | 21, 23 | biadanii 821 | . . 3 ⊢ (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
25 | 12, 18, 24 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
26 | 25 | eqrdv 2731 | 1 ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 MndHom cmhm 18669 Grpcgrp 18819 GrpHom cghm 19089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-ghm 19090 |
This theorem is referenced by: rhmpropd 20356 lmhmpropd 20684 evls1maplmhm 32760 |
Copyright terms: Public domain | W3C validator |