MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmpropd Structured version   Visualization version   GIF version

Theorem ghmpropd 19296
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ghmpropd.a (𝜑𝐵 = (Base‘𝐽))
ghmpropd.b (𝜑𝐶 = (Base‘𝐾))
ghmpropd.c (𝜑𝐵 = (Base‘𝐿))
ghmpropd.d (𝜑𝐶 = (Base‘𝑀))
ghmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
ghmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
ghmpropd (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ghmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ghmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 ghmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 ghmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 18991 . . . . 5 (𝜑 → (𝐽 ∈ Grp ↔ 𝐿 ∈ Grp))
5 ghmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
6 ghmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
7 ghmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
85, 6, 7grppropd 18991 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝑀 ∈ Grp))
94, 8anbi12d 631 . . . 4 (𝜑 → ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ↔ (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp)))
101, 5, 2, 6, 3, 7mhmpropd 18827 . . . . 5 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
1110eleq2d 2830 . . . 4 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
129, 11anbi12d 631 . . 3 (𝜑 → (((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀))))
13 ghmgrp1 19258 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐽 ∈ Grp)
14 ghmgrp2 19259 . . . . 5 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝐾 ∈ Grp)
1513, 14jca 511 . . . 4 (𝑓 ∈ (𝐽 GrpHom 𝐾) → (𝐽 ∈ Grp ∧ 𝐾 ∈ Grp))
16 ghmmhmb 19267 . . . . 5 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝐽 GrpHom 𝐾) = (𝐽 MndHom 𝐾))
1716eleq2d 2830 . . . 4 ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐽 MndHom 𝐾)))
1815, 17biadanii 821 . . 3 (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ ((𝐽 ∈ Grp ∧ 𝐾 ∈ Grp) ∧ 𝑓 ∈ (𝐽 MndHom 𝐾)))
19 ghmgrp1 19258 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝐿 ∈ Grp)
20 ghmgrp2 19259 . . . . 5 (𝑓 ∈ (𝐿 GrpHom 𝑀) → 𝑀 ∈ Grp)
2119, 20jca 511 . . . 4 (𝑓 ∈ (𝐿 GrpHom 𝑀) → (𝐿 ∈ Grp ∧ 𝑀 ∈ Grp))
22 ghmmhmb 19267 . . . . 5 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐿 GrpHom 𝑀) = (𝐿 MndHom 𝑀))
2322eleq2d 2830 . . . 4 ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2421, 23biadanii 821 . . 3 (𝑓 ∈ (𝐿 GrpHom 𝑀) ↔ ((𝐿 ∈ Grp ∧ 𝑀 ∈ Grp) ∧ 𝑓 ∈ (𝐿 MndHom 𝑀)))
2512, 18, 243bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2625eqrdv 2738 1 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311   MndHom cmhm 18816  Grpcgrp 18973   GrpHom cghm 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253
This theorem is referenced by:  rhmpropd  20637  lmhmpropd  21095  evls1maplmhm  22402
  Copyright terms: Public domain W3C validator