Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1valc Structured version   Visualization version   GIF version

Theorem hdmap1valc 41841
Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41840 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1valc.h 𝐻 = (LHyp‘𝐾)
hdmap1valc.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1valc.v 𝑉 = (Base‘𝑈)
hdmap1valc.s = (-g𝑈)
hdmap1valc.o 0 = (0g𝑈)
hdmap1valc.n 𝑁 = (LSpan‘𝑈)
hdmap1valc.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1valc.d 𝐷 = (Base‘𝐶)
hdmap1valc.r 𝑅 = (-g𝐶)
hdmap1valc.q 𝑄 = (0g𝐶)
hdmap1valc.j 𝐽 = (LSpan‘𝐶)
hdmap1valc.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1valc.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1valc.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1valc.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1valc.f (𝜑𝐹𝐷)
hdmap1valc.y (𝜑𝑌𝑉)
hdmap1valc.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1valc (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑌⟩))
Distinct variable groups:   𝑥, 0   𝑥,,𝐷   ,𝐽,𝑥   ,𝑀,𝑥   ,,𝑥   ,𝑁,𝑥   𝑅,,𝑥   𝑥,𝑄
Allowed substitution hints:   𝜑(𝑥,)   𝐶(𝑥,)   𝑄()   𝑈(𝑥,)   𝐹(𝑥,)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝐿(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)   𝑋(𝑥,)   𝑌(𝑥,)   0 ()

Proof of Theorem hdmap1valc
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1valc.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1valc.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1valc.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1valc.s . . 3 = (-g𝑈)
5 hdmap1valc.o . . 3 0 = (0g𝑈)
6 hdmap1valc.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1valc.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1valc.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1valc.r . . 3 𝑅 = (-g𝐶)
10 hdmap1valc.q . . 3 𝑄 = (0g𝐶)
11 hdmap1valc.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1valc.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1valc.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1valc.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1valc.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3914 . . 3 (𝜑𝑋𝑉)
17 hdmap1valc.f . . 3 (𝜑𝐹𝐷)
18 hdmap1valc.y . . 3 (𝜑𝑌𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18hdmap1val 41836 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)})))))
20 hdmap1valc.l . . . 4 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2120hdmap1cbv 41840 . . 3 𝐿 = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤)) (2nd𝑤))})) = (𝐽‘{((2nd ‘(1st𝑤))𝑅𝑔)})))))
2210, 21, 16, 17, 18mapdhval 41762 . 2 (𝜑 → (𝐿‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)})))))
2319, 22eqtr4d 2769 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑌⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  ifcif 4475  {csn 4576  cotp 4584  cmpt 5172  cfv 6481  crio 7302  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  0gc0g 17340  -gcsg 18845  LSpanclspn 20902  HLchlt 39388  LHypclh 40022  DVecHcdvh 41116  LCDualclcd 41624  mapdcmpd 41662  HDMap1chdma1 41829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-hdmap1 41831
This theorem is referenced by:  hdmap1cl  41842  hdmap1eq2  41843  hdmap1eq4N  41844  hdmap1eulem  41860  hdmap1eulemOLDN  41861
  Copyright terms: Public domain W3C validator