![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1valc | Structured version Visualization version GIF version |
Description: Connect the value of the preliminary map from vectors to functionals πΌ to the hypothesis πΏ used by earlier theorems. Note: the π β (π β { 0 }) hypothesis could be the more general π β π but the former will be easier to use. TODO: use the πΌ function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41163 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
Ref | Expression |
---|---|
hdmap1valc.h | β’ π» = (LHypβπΎ) |
hdmap1valc.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap1valc.v | β’ π = (Baseβπ) |
hdmap1valc.s | β’ β = (-gβπ) |
hdmap1valc.o | β’ 0 = (0gβπ) |
hdmap1valc.n | β’ π = (LSpanβπ) |
hdmap1valc.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap1valc.d | β’ π· = (BaseβπΆ) |
hdmap1valc.r | β’ π = (-gβπΆ) |
hdmap1valc.q | β’ π = (0gβπΆ) |
hdmap1valc.j | β’ π½ = (LSpanβπΆ) |
hdmap1valc.m | β’ π = ((mapdβπΎ)βπ) |
hdmap1valc.i | β’ πΌ = ((HDMap1βπΎ)βπ) |
hdmap1valc.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap1valc.x | β’ (π β π β (π β { 0 })) |
hdmap1valc.f | β’ (π β πΉ β π·) |
hdmap1valc.y | β’ (π β π β π) |
hdmap1valc.l | β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
Ref | Expression |
---|---|
hdmap1valc | β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΏββ¨π, πΉ, πβ©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1valc.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hdmap1valc.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmap1valc.v | . . 3 β’ π = (Baseβπ) | |
4 | hdmap1valc.s | . . 3 β’ β = (-gβπ) | |
5 | hdmap1valc.o | . . 3 β’ 0 = (0gβπ) | |
6 | hdmap1valc.n | . . 3 β’ π = (LSpanβπ) | |
7 | hdmap1valc.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
8 | hdmap1valc.d | . . 3 β’ π· = (BaseβπΆ) | |
9 | hdmap1valc.r | . . 3 β’ π = (-gβπΆ) | |
10 | hdmap1valc.q | . . 3 β’ π = (0gβπΆ) | |
11 | hdmap1valc.j | . . 3 β’ π½ = (LSpanβπΆ) | |
12 | hdmap1valc.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
13 | hdmap1valc.i | . . 3 β’ πΌ = ((HDMap1βπΎ)βπ) | |
14 | hdmap1valc.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | hdmap1valc.x | . . . 4 β’ (π β π β (π β { 0 })) | |
16 | 15 | eldifad 3952 | . . 3 β’ (π β π β π) |
17 | hdmap1valc.f | . . 3 β’ (π β πΉ β π·) | |
18 | hdmap1valc.y | . . 3 β’ (π β π β π) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 | hdmap1val 41159 | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = if(π = 0 , π, (β©π β π· ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ π)}))))) |
20 | hdmap1valc.l | . . . 4 β’ πΏ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
21 | 20 | hdmap1cbv 41163 | . . 3 β’ πΏ = (π€ β V β¦ if((2nd βπ€) = 0 , π, (β©π β π· ((πβ(πβ{(2nd βπ€)})) = (π½β{π}) β§ (πβ(πβ{((1st β(1st βπ€)) β (2nd βπ€))})) = (π½β{((2nd β(1st βπ€))π π)}))))) |
22 | 10, 21, 16, 17, 18 | mapdhval 41085 | . 2 β’ (π β (πΏββ¨π, πΉ, πβ©) = if(π = 0 , π, (β©π β π· ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ π)}))))) |
23 | 19, 22 | eqtr4d 2767 | 1 β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΏββ¨π, πΉ, πβ©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 β cdif 3937 ifcif 4520 {csn 4620 β¨cotp 4628 β¦ cmpt 5221 βcfv 6533 β©crio 7356 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 Basecbs 17143 0gc0g 17384 -gcsg 18855 LSpanclspn 20808 HLchlt 38710 LHypclh 39345 DVecHcdvh 40439 LCDualclcd 40947 mapdcmpd 40985 HDMap1chdma1 41152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-ot 4629 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-1st 7968 df-2nd 7969 df-hdmap1 41154 |
This theorem is referenced by: hdmap1cl 41165 hdmap1eq2 41166 hdmap1eq4N 41167 hdmap1eulem 41183 hdmap1eulemOLDN 41184 |
Copyright terms: Public domain | W3C validator |