Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1valc Structured version   Visualization version   GIF version

Theorem hdmap1valc 41797
Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41796 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1valc.h 𝐻 = (LHyp‘𝐾)
hdmap1valc.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1valc.v 𝑉 = (Base‘𝑈)
hdmap1valc.s = (-g𝑈)
hdmap1valc.o 0 = (0g𝑈)
hdmap1valc.n 𝑁 = (LSpan‘𝑈)
hdmap1valc.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1valc.d 𝐷 = (Base‘𝐶)
hdmap1valc.r 𝑅 = (-g𝐶)
hdmap1valc.q 𝑄 = (0g𝐶)
hdmap1valc.j 𝐽 = (LSpan‘𝐶)
hdmap1valc.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1valc.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1valc.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1valc.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1valc.f (𝜑𝐹𝐷)
hdmap1valc.y (𝜑𝑌𝑉)
hdmap1valc.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1valc (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑌⟩))
Distinct variable groups:   𝑥, 0   𝑥,,𝐷   ,𝐽,𝑥   ,𝑀,𝑥   ,,𝑥   ,𝑁,𝑥   𝑅,,𝑥   𝑥,𝑄
Allowed substitution hints:   𝜑(𝑥,)   𝐶(𝑥,)   𝑄()   𝑈(𝑥,)   𝐹(𝑥,)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝐿(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)   𝑋(𝑥,)   𝑌(𝑥,)   0 ()

Proof of Theorem hdmap1valc
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1valc.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1valc.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1valc.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1valc.s . . 3 = (-g𝑈)
5 hdmap1valc.o . . 3 0 = (0g𝑈)
6 hdmap1valc.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1valc.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1valc.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1valc.r . . 3 𝑅 = (-g𝐶)
10 hdmap1valc.q . . 3 𝑄 = (0g𝐶)
11 hdmap1valc.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1valc.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1valc.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1valc.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1valc.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3926 . . 3 (𝜑𝑋𝑉)
17 hdmap1valc.f . . 3 (𝜑𝐹𝐷)
18 hdmap1valc.y . . 3 (𝜑𝑌𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18hdmap1val 41792 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)})))))
20 hdmap1valc.l . . . 4 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2120hdmap1cbv 41796 . . 3 𝐿 = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤)) (2nd𝑤))})) = (𝐽‘{((2nd ‘(1st𝑤))𝑅𝑔)})))))
2210, 21, 16, 17, 18mapdhval 41718 . 2 (𝜑 → (𝐿‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , 𝑄, (𝑔𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)})))))
2319, 22eqtr4d 2767 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑌⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  ifcif 4488  {csn 4589  cotp 4597  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  0gc0g 17402  -gcsg 18867  LSpanclspn 20877  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  mapdcmpd 41618  HDMap1chdma1 41785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-hdmap1 41787
This theorem is referenced by:  hdmap1cl  41798  hdmap1eq2  41799  hdmap1eq4N  41800  hdmap1eulem  41816  hdmap1eulemOLDN  41817
  Copyright terms: Public domain W3C validator