Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1valc Structured version   Visualization version   GIF version

Theorem hdmap1valc 41164
Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 βˆ– { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41163 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1valc.h 𝐻 = (LHypβ€˜πΎ)
hdmap1valc.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmap1valc.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmap1valc.s βˆ’ = (-gβ€˜π‘ˆ)
hdmap1valc.o 0 = (0gβ€˜π‘ˆ)
hdmap1valc.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmap1valc.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmap1valc.d 𝐷 = (Baseβ€˜πΆ)
hdmap1valc.r 𝑅 = (-gβ€˜πΆ)
hdmap1valc.q 𝑄 = (0gβ€˜πΆ)
hdmap1valc.j 𝐽 = (LSpanβ€˜πΆ)
hdmap1valc.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
hdmap1valc.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmap1valc.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
hdmap1valc.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
hdmap1valc.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
hdmap1valc.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
hdmap1valc.l 𝐿 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
Assertion
Ref Expression
hdmap1valc (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = (πΏβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))
Distinct variable groups:   π‘₯, 0   π‘₯,β„Ž,𝐷   β„Ž,𝐽,π‘₯   β„Ž,𝑀,π‘₯   βˆ’ ,β„Ž,π‘₯   β„Ž,𝑁,π‘₯   𝑅,β„Ž,π‘₯   π‘₯,𝑄
Allowed substitution hints:   πœ‘(π‘₯,β„Ž)   𝐢(π‘₯,β„Ž)   𝑄(β„Ž)   π‘ˆ(π‘₯,β„Ž)   𝐹(π‘₯,β„Ž)   𝐻(π‘₯,β„Ž)   𝐼(π‘₯,β„Ž)   𝐾(π‘₯,β„Ž)   𝐿(π‘₯,β„Ž)   𝑉(π‘₯,β„Ž)   π‘Š(π‘₯,β„Ž)   𝑋(π‘₯,β„Ž)   π‘Œ(π‘₯,β„Ž)   0 (β„Ž)

Proof of Theorem hdmap1valc
Dummy variables 𝑀 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1valc.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 hdmap1valc.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hdmap1valc.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
4 hdmap1valc.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
5 hdmap1valc.o . . 3 0 = (0gβ€˜π‘ˆ)
6 hdmap1valc.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
7 hdmap1valc.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
8 hdmap1valc.d . . 3 𝐷 = (Baseβ€˜πΆ)
9 hdmap1valc.r . . 3 𝑅 = (-gβ€˜πΆ)
10 hdmap1valc.q . . 3 𝑄 = (0gβ€˜πΆ)
11 hdmap1valc.j . . 3 𝐽 = (LSpanβ€˜πΆ)
12 hdmap1valc.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
13 hdmap1valc.i . . 3 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
14 hdmap1valc.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
15 hdmap1valc.x . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
1615eldifad 3952 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
17 hdmap1valc.f . . 3 (πœ‘ β†’ 𝐹 ∈ 𝐷)
18 hdmap1valc.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18hdmap1val 41159 . 2 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if(π‘Œ = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑔}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝑔)})))))
20 hdmap1valc.l . . . 4 𝐿 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
2120hdmap1cbv 41163 . . 3 𝐿 = (𝑀 ∈ V ↦ if((2nd β€˜π‘€) = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘€)})) = (π½β€˜{𝑔}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘€)) βˆ’ (2nd β€˜π‘€))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘€))𝑅𝑔)})))))
2210, 21, 16, 17, 18mapdhval 41085 . 2 (πœ‘ β†’ (πΏβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if(π‘Œ = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝑔}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝑔)})))))
2319, 22eqtr4d 2767 1 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = (πΏβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3466   βˆ– cdif 3937  ifcif 4520  {csn 4620  βŸ¨cotp 4628   ↦ cmpt 5221  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967  Basecbs 17143  0gc0g 17384  -gcsg 18855  LSpanclspn 20808  HLchlt 38710  LHypclh 39345  DVecHcdvh 40439  LCDualclcd 40947  mapdcmpd 40985  HDMap1chdma1 41152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-ot 4629  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-1st 7968  df-2nd 7969  df-hdmap1 41154
This theorem is referenced by:  hdmap1cl  41165  hdmap1eq2  41166  hdmap1eq4N  41167  hdmap1eulem  41183  hdmap1eulemOLDN  41184
  Copyright terms: Public domain W3C validator