| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1valc | Structured version Visualization version GIF version | ||
| Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41840 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1valc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1valc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1valc.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1valc.s | ⊢ − = (-g‘𝑈) |
| hdmap1valc.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1valc.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1valc.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1valc.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1valc.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1valc.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1valc.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| hdmap1valc.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1valc.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1valc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1valc.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1valc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1valc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap1valc.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| Ref | Expression |
|---|---|
| hdmap1valc | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1valc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1valc.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1valc.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1valc.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | hdmap1valc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap1valc.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap1valc.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1valc.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap1valc.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | hdmap1valc.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | hdmap1valc.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | hdmap1valc.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1valc.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 14 | hdmap1valc.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1valc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | 15 | eldifad 3914 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | hdmap1valc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 18 | hdmap1valc.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 | hdmap1val 41836 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 20 | hdmap1valc.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 21 | 20 | hdmap1cbv 41840 | . . 3 ⊢ 𝐿 = (𝑤 ∈ V ↦ if((2nd ‘𝑤) = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑤)) − (2nd ‘𝑤))})) = (𝐽‘{((2nd ‘(1st ‘𝑤))𝑅𝑔)}))))) |
| 22 | 10, 21, 16, 17, 18 | mapdhval 41762 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 23 | 19, 22 | eqtr4d 2769 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ifcif 4475 {csn 4576 〈cotp 4584 ↦ cmpt 5172 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 0gc0g 17340 -gcsg 18845 LSpanclspn 20902 HLchlt 39388 LHypclh 40022 DVecHcdvh 41116 LCDualclcd 41624 mapdcmpd 41662 HDMap1chdma1 41829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-1st 7921 df-2nd 7922 df-hdmap1 41831 |
| This theorem is referenced by: hdmap1cl 41842 hdmap1eq2 41843 hdmap1eq4N 41844 hdmap1eulem 41860 hdmap1eulemOLDN 41861 |
| Copyright terms: Public domain | W3C validator |