| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1valc | Structured version Visualization version GIF version | ||
| Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41804 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1valc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1valc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1valc.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1valc.s | ⊢ − = (-g‘𝑈) |
| hdmap1valc.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1valc.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1valc.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1valc.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1valc.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1valc.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1valc.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| hdmap1valc.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1valc.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1valc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1valc.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1valc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1valc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap1valc.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| Ref | Expression |
|---|---|
| hdmap1valc | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1valc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1valc.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1valc.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1valc.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | hdmap1valc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap1valc.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap1valc.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1valc.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap1valc.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | hdmap1valc.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | hdmap1valc.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | hdmap1valc.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1valc.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 14 | hdmap1valc.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1valc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | 15 | eldifad 3963 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | hdmap1valc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 18 | hdmap1valc.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 | hdmap1val 41800 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 20 | hdmap1valc.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 21 | 20 | hdmap1cbv 41804 | . . 3 ⊢ 𝐿 = (𝑤 ∈ V ↦ if((2nd ‘𝑤) = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑤)) − (2nd ‘𝑤))})) = (𝐽‘{((2nd ‘(1st ‘𝑤))𝑅𝑔)}))))) |
| 22 | 10, 21, 16, 17, 18 | mapdhval 41726 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 23 | 19, 22 | eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ifcif 4525 {csn 4626 〈cotp 4634 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 1st c1st 8012 2nd c2nd 8013 Basecbs 17247 0gc0g 17484 -gcsg 18953 LSpanclspn 20969 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 LCDualclcd 41588 mapdcmpd 41626 HDMap1chdma1 41793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-1st 8014 df-2nd 8015 df-hdmap1 41795 |
| This theorem is referenced by: hdmap1cl 41806 hdmap1eq2 41807 hdmap1eq4N 41808 hdmap1eulem 41824 hdmap1eulemOLDN 41825 |
| Copyright terms: Public domain | W3C validator |