| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1valc | Structured version Visualization version GIF version | ||
| Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 41750 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1valc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1valc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1valc.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1valc.s | ⊢ − = (-g‘𝑈) |
| hdmap1valc.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1valc.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1valc.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1valc.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1valc.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1valc.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1valc.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| hdmap1valc.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1valc.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1valc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1valc.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1valc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1valc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap1valc.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| Ref | Expression |
|---|---|
| hdmap1valc | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1valc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1valc.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1valc.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1valc.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | hdmap1valc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap1valc.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap1valc.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1valc.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap1valc.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | hdmap1valc.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | hdmap1valc.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | hdmap1valc.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1valc.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 14 | hdmap1valc.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1valc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | 15 | eldifad 3936 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | hdmap1valc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 18 | hdmap1valc.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 | hdmap1val 41746 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 20 | hdmap1valc.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 21 | 20 | hdmap1cbv 41750 | . . 3 ⊢ 𝐿 = (𝑤 ∈ V ↦ if((2nd ‘𝑤) = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑤)) − (2nd ‘𝑤))})) = (𝐽‘{((2nd ‘(1st ‘𝑤))𝑅𝑔)}))))) |
| 22 | 10, 21, 16, 17, 18 | mapdhval 41672 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
| 23 | 19, 22 | eqtr4d 2772 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∖ cdif 3921 ifcif 4498 {csn 4599 〈cotp 4607 ↦ cmpt 5199 ‘cfv 6528 ℩crio 7356 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Basecbs 17215 0gc0g 17440 -gcsg 18905 LSpanclspn 20915 HLchlt 39297 LHypclh 39932 DVecHcdvh 41026 LCDualclcd 41534 mapdcmpd 41572 HDMap1chdma1 41739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-ot 4608 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-1st 7983 df-2nd 7984 df-hdmap1 41741 |
| This theorem is referenced by: hdmap1cl 41752 hdmap1eq2 41753 hdmap1eq4N 41754 hdmap1eulem 41770 hdmap1eulemOLDN 41771 |
| Copyright terms: Public domain | W3C validator |