Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1eq2 | Structured version Visualization version GIF version |
Description: Convert mapdheq2 39341 to use HDMap1 function. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1eq2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1eq2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1eq2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1eq2.o | ⊢ 0 = (0g‘𝑈) |
hdmap1eq2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1eq2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1eq2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1eq2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1eq2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1eq2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1eq2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1eq2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1eq2.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
hdmap1eq2.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
hdmap1eq2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1eq2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap1eq2.e | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
Ref | Expression |
---|---|
hdmap1eq2 | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1eq2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1eq2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1eq2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | eqid 2759 | . . 3 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
5 | hdmap1eq2.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1eq2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1eq2.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1eq2.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | eqid 2759 | . . 3 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
10 | eqid 2759 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
11 | hdmap1eq2.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
12 | hdmap1eq2.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1eq2.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1eq2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1eq2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
16 | hdmap1eq2.e | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
17 | hdmap1eq2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
18 | hdmap1eq2.mn | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
19 | hdmap1eq2.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
20 | hdmap1eq2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | 15 | eldifad 3873 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
22 | 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21 | hdmap1cl 39416 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
23 | 16, 22 | eqeltrrd 2854 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
24 | 20 | eldifad 3873 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
25 | eqid 2759 | . . 3 ⊢ (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)}))))) = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)}))))) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25 | hdmap1valc 39415 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = ((𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)})))))‘〈𝑌, 𝐺, 𝑋〉)) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 17, 21, 25 | hdmap1valc 39415 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = ((𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)})))))‘〈𝑋, 𝐹, 𝑌〉)) |
28 | 27, 16 | eqtr3d 2796 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)})))))‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 14, 17, 18, 28, 19, 20, 15 | mapdh75e 39364 | . 2 ⊢ (𝜑 → ((𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥))(-g‘𝑈)(2nd ‘𝑥))})) = (𝐿‘{((2nd ‘(1st ‘𝑥))(-g‘𝐶)ℎ)})))))‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) |
30 | 26, 29 | eqtrd 2794 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 ∖ cdif 3858 ifcif 4424 {csn 4526 〈cotp 4534 ↦ cmpt 5117 ‘cfv 6341 ℩crio 7114 (class class class)co 7157 1st c1st 7698 2nd c2nd 7699 Basecbs 16556 0gc0g 16786 -gcsg 18186 LSpanclspn 19826 HLchlt 36962 LHypclh 37596 DVecHcdvh 38690 LCDualclcd 39198 mapdcmpd 39236 HDMap1chdma1 39403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-riotaBAD 36565 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-ot 4535 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-tpos 7909 df-undef 7956 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-n0 11949 df-z 12035 df-uz 12297 df-fz 12954 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-sca 16654 df-vsca 16655 df-0g 16788 df-mre 16930 df-mrc 16931 df-acs 16933 df-proset 17619 df-poset 17637 df-plt 17649 df-lub 17665 df-glb 17666 df-join 17667 df-meet 17668 df-p0 17730 df-p1 17731 df-lat 17737 df-clat 17799 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-subg 18358 df-cntz 18529 df-oppg 18556 df-lsm 18843 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-ring 19382 df-oppr 19459 df-dvdsr 19477 df-unit 19478 df-invr 19508 df-dvr 19519 df-drng 19587 df-lmod 19719 df-lss 19787 df-lsp 19827 df-lvec 19958 df-lsatoms 36588 df-lshyp 36589 df-lcv 36631 df-lfl 36670 df-lkr 36698 df-ldual 36736 df-oposet 36788 df-ol 36790 df-oml 36791 df-covers 36878 df-ats 36879 df-atl 36910 df-cvlat 36934 df-hlat 36963 df-llines 37110 df-lplanes 37111 df-lvols 37112 df-lines 37113 df-psubsp 37115 df-pmap 37116 df-padd 37408 df-lhyp 37600 df-laut 37601 df-ldil 37716 df-ltrn 37717 df-trl 37771 df-tgrp 38355 df-tendo 38367 df-edring 38369 df-dveca 38615 df-disoa 38641 df-dvech 38691 df-dib 38751 df-dic 38785 df-dih 38841 df-doch 38960 df-djh 39007 df-lcdual 39199 df-mapd 39237 df-hdmap1 39405 |
This theorem is referenced by: hdmapeveclem 39446 |
Copyright terms: Public domain | W3C validator |