Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfnN Structured version   Visualization version   GIF version

Theorem hdmapfnN 41938
Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapfn.h 𝐻 = (LHyp‘𝐾)
hdmapfn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfn.v 𝑉 = (Base‘𝑈)
hdmapfn.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hdmapfnN (𝜑𝑆 Fn 𝑉)

Proof of Theorem hdmapfnN
Dummy variables 𝑦 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7307 . . 3 (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩))) ∈ V
2 eqid 2731 . . 3 (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩))))
31, 2fnmpti 6624 . 2 (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) Fn 𝑉
4 hdmapfn.h . . . 4 𝐻 = (LHyp‘𝐾)
5 eqid 2731 . . . 4 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
6 hdmapfn.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 hdmapfn.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2731 . . . 4 (LSpan‘𝑈) = (LSpan‘𝑈)
9 eqid 2731 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
10 eqid 2731 . . . 4 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
11 eqid 2731 . . . 4 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
12 eqid 2731 . . . 4 ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊)
13 hdmapfn.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmapfn.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmapfval 41936 . . 3 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))))
1615fneq1d 6574 . 2 (𝜑 → (𝑆 Fn 𝑉 ↔ (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) Fn 𝑉))
173, 16mpbiri 258 1 (𝜑𝑆 Fn 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cun 3895  {csn 4573  cop 4579  cotp 4581  cmpt 5170   I cid 5508  cres 5616   Fn wfn 6476  cfv 6481  crio 7302  Basecbs 17120  LSpanclspn 20904  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  DVecHcdvh 41187  LCDualclcd 41695  HVMapchvm 41865  HDMap1chdma1 41900  HDMapchdma 41901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-hdmap 41903
This theorem is referenced by:  hdmaprnlem11N  41969  hdmaprnlem17N  41972  hdmaprnN  41973  hdmapf1oN  41974  hgmaprnlem4N  42008
  Copyright terms: Public domain W3C validator