Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfnN Structured version   Visualization version   GIF version

Theorem hdmapfnN 41812
Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapfn.h 𝐻 = (LHyp‘𝐾)
hdmapfn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfn.v 𝑉 = (Base‘𝑈)
hdmapfn.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hdmapfnN (𝜑𝑆 Fn 𝑉)

Proof of Theorem hdmapfnN
Dummy variables 𝑦 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7310 . . 3 (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩))) ∈ V
2 eqid 2729 . . 3 (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩))))
31, 2fnmpti 6625 . 2 (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) Fn 𝑉
4 hdmapfn.h . . . 4 𝐻 = (LHyp‘𝐾)
5 eqid 2729 . . . 4 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
6 hdmapfn.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 hdmapfn.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2729 . . . 4 (LSpan‘𝑈) = (LSpan‘𝑈)
9 eqid 2729 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
10 eqid 2729 . . . 4 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
11 eqid 2729 . . . 4 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
12 eqid 2729 . . . 4 ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊)
13 hdmapfn.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmapfn.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmapfval 41810 . . 3 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))))
1615fneq1d 6575 . 2 (𝜑 → (𝑆 Fn 𝑉 ↔ (𝑡𝑉 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑉𝑧 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑧, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑧⟩), 𝑡⟩)))) Fn 𝑉))
173, 16mpbiri 258 1 (𝜑𝑆 Fn 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3901  {csn 4577  cop 4583  cotp 4585  cmpt 5173   I cid 5513  cres 5621   Fn wfn 6477  cfv 6482  crio 7305  Basecbs 17120  LSpanclspn 20874  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  DVecHcdvh 41061  LCDualclcd 41569  HVMapchvm 41739  HDMap1chdma1 41774  HDMapchdma 41775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-hdmap 41777
This theorem is referenced by:  hdmaprnlem11N  41843  hdmaprnlem17N  41846  hdmaprnN  41847  hdmapf1oN  41848  hgmaprnlem4N  41882
  Copyright terms: Public domain W3C validator