Step | Hyp | Ref
| Expression |
1 | | riotaex 7216 |
. . 3
⊢
(℩𝑦
∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉))) ∈ V |
2 | | eqid 2738 |
. . 3
⊢ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉)))) |
3 | 1, 2 | fnmpti 6560 |
. 2
⊢ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉)))) Fn 𝑉 |
4 | | hdmapfn.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | eqid 2738 |
. . . 4
⊢ 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
6 | | hdmapfn.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
7 | | hdmapfn.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
8 | | eqid 2738 |
. . . 4
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
9 | | eqid 2738 |
. . . 4
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
10 | | eqid 2738 |
. . . 4
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
11 | | eqid 2738 |
. . . 4
⊢
((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) |
12 | | eqid 2738 |
. . . 4
⊢
((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) |
13 | | hdmapfn.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
14 | | hdmapfn.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hdmapfval 39768 |
. . 3
⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉))))) |
16 | 15 | fneq1d 6510 |
. 2
⊢ (𝜑 → (𝑆 Fn 𝑉 ↔ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∪
((LSpan‘𝑈)‘{𝑡})) → 𝑦 = (((HDMap1‘𝐾)‘𝑊)‘〈𝑧, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑧〉), 𝑡〉)))) Fn 𝑉)) |
17 | 3, 16 | mpbiri 257 |
1
⊢ (𝜑 → 𝑆 Fn 𝑉) |