Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfnN Structured version   Visualization version   GIF version

Theorem hdmapfnN 41003
Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapfn.h 𝐻 = (LHypβ€˜πΎ)
hdmapfn.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmapfn.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmapfn.s 𝑆 = ((HDMapβ€˜πΎ)β€˜π‘Š)
hdmapfn.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
hdmapfnN (πœ‘ β†’ 𝑆 Fn 𝑉)

Proof of Theorem hdmapfnN
Dummy variables 𝑦 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7371 . . 3 (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©))) ∈ V
2 eqid 2732 . . 3 (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©)))) = (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©))))
31, 2fnmpti 6693 . 2 (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©)))) Fn 𝑉
4 hdmapfn.h . . . 4 𝐻 = (LHypβ€˜πΎ)
5 eqid 2732 . . . 4 ⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩ = ⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩
6 hdmapfn.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
7 hdmapfn.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
8 eqid 2732 . . . 4 (LSpanβ€˜π‘ˆ) = (LSpanβ€˜π‘ˆ)
9 eqid 2732 . . . 4 ((LCDualβ€˜πΎ)β€˜π‘Š) = ((LCDualβ€˜πΎ)β€˜π‘Š)
10 eqid 2732 . . . 4 (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š)) = (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))
11 eqid 2732 . . . 4 ((HVMapβ€˜πΎ)β€˜π‘Š) = ((HVMapβ€˜πΎ)β€˜π‘Š)
12 eqid 2732 . . . 4 ((HDMap1β€˜πΎ)β€˜π‘Š) = ((HDMap1β€˜πΎ)β€˜π‘Š)
13 hdmapfn.s . . . 4 𝑆 = ((HDMapβ€˜πΎ)β€˜π‘Š)
14 hdmapfn.k . . . 4 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmapfval 41001 . . 3 (πœ‘ β†’ 𝑆 = (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©)))))
1615fneq1d 6642 . 2 (πœ‘ β†’ (𝑆 Fn 𝑉 ↔ (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜πΎ)β€˜π‘Š))βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘ˆ)β€˜{⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩}) βˆͺ ((LSpanβ€˜π‘ˆ)β€˜{𝑑})) β†’ 𝑦 = (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨π‘§, (((HDMap1β€˜πΎ)β€˜π‘Š)β€˜βŸ¨βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩, (((HVMapβ€˜πΎ)β€˜π‘Š)β€˜βŸ¨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩), π‘§βŸ©), π‘‘βŸ©)))) Fn 𝑉))
173, 16mpbiri 257 1 (πœ‘ β†’ 𝑆 Fn 𝑉)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βˆͺ cun 3946  {csn 4628  βŸ¨cop 4634  βŸ¨cotp 4636   ↦ cmpt 5231   I cid 5573   β†Ύ cres 5678   Fn wfn 6538  β€˜cfv 6543  β„©crio 7366  Basecbs 17148  LSpanclspn 20726  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  DVecHcdvh 40252  LCDualclcd 40760  HVMapchvm 40930  HDMap1chdma1 40965  HDMapchdma 40966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-hdmap 40968
This theorem is referenced by:  hdmaprnlem11N  41034  hdmaprnlem17N  41037  hdmaprnN  41038  hdmapf1oN  41039  hgmaprnlem4N  41073
  Copyright terms: Public domain W3C validator