Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapcl Structured version   Visualization version   GIF version

Theorem hdmapcl 38833
Description: Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapcl.h 𝐻 = (LHyp‘𝐾)
hdmapcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapcl.v 𝑉 = (Base‘𝑈)
hdmapcl.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapcl.d 𝐷 = (Base‘𝐶)
hdmapcl.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapcl.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapcl.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmapcl (𝜑 → (𝑆𝑇) ∈ 𝐷)

Proof of Theorem hdmapcl
Dummy variables 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapcl.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2825 . . 3 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapcl.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hdmapcl.v . . 3 𝑉 = (Base‘𝑈)
5 eqid 2825 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
6 hdmapcl.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapcl.d . . 3 𝐷 = (Base‘𝐶)
8 eqid 2825 . . 3 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
9 eqid 2825 . . 3 ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊)
10 hdmapcl.s . . 3 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hdmapcl.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 hdmapcl.t . . 3 (𝜑𝑇𝑉)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hdmapval 38831 . 2 (𝜑 → (𝑆𝑇) = (𝐷𝑦𝑉𝑦 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑇})) → = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑦, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑦⟩), 𝑇⟩))))
14 eqid 2825 . . . 4 (0g𝑈) = (0g𝑈)
15 eqid 2825 . . . 4 (LSpan‘𝐶) = (LSpan‘𝐶)
16 eqid 2825 . . . 4 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
17 eqid 2825 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2825 . . . . . 6 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
191, 17, 18, 3, 4, 14, 2, 11dvheveccl 38115 . . . . 5 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (𝑉 ∖ {(0g𝑈)}))
201, 3, 4, 14, 5, 6, 15, 16, 8, 11, 19mapdhvmap 38772 . . . 4 (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) = ((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)}))
21 eqid 2825 . . . . . 6 (0g𝐶) = (0g𝐶)
221, 3, 4, 14, 6, 7, 21, 8, 11, 19hvmapcl2 38769 . . . . 5 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ (𝐷 ∖ {(0g𝐶)}))
2322eldifad 3951 . . . 4 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ 𝐷)
241, 3, 4, 14, 5, 6, 7, 15, 16, 9, 11, 20, 19, 23, 12hdmap1eu 38827 . . 3 (𝜑 → ∃!𝐷𝑦𝑉𝑦 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑇})) → = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑦, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑦⟩), 𝑇⟩)))
25 riotacl 7126 . . 3 (∃!𝐷𝑦𝑉𝑦 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑇})) → = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑦, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑦⟩), 𝑇⟩)) → (𝐷𝑦𝑉𝑦 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑇})) → = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑦, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑦⟩), 𝑇⟩))) ∈ 𝐷)
2624, 25syl 17 . 2 (𝜑 → (𝐷𝑦𝑉𝑦 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{𝑇})) → = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑦, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑦⟩), 𝑇⟩))) ∈ 𝐷)
2713, 26eqeltrd 2917 1 (𝜑 → (𝑆𝑇) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3142  ∃!wreu 3144  cun 3937  {csn 4563  cop 4569  cotp 4571   I cid 5457  cres 5555  cfv 6351  crio 7108  Basecbs 16475  0gc0g 16705  LSpanclspn 19665  HLchlt 36353  LHypclh 36987  LTrncltrn 37104  DVecHcdvh 38081  LCDualclcd 38589  mapdcmpd 38627  HVMapchvm 38759  HDMap1chdma1 38794  HDMapchdma 38795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 35956
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-subg 18208  df-cntz 18379  df-oppg 18406  df-lsm 18683  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-drng 19426  df-lmod 19558  df-lss 19626  df-lsp 19666  df-lvec 19797  df-lsatoms 35979  df-lshyp 35980  df-lcv 36022  df-lfl 36061  df-lkr 36089  df-ldual 36127  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-llines 36501  df-lplanes 36502  df-lvols 36503  df-lines 36504  df-psubsp 36506  df-pmap 36507  df-padd 36799  df-lhyp 36991  df-laut 36992  df-ldil 37107  df-ltrn 37108  df-trl 37162  df-tgrp 37746  df-tendo 37758  df-edring 37760  df-dveca 38006  df-disoa 38032  df-dvech 38082  df-dib 38142  df-dic 38176  df-dih 38232  df-doch 38351  df-djh 38398  df-lcdual 38590  df-mapd 38628  df-hvmap 38760  df-hdmap1 38796  df-hdmap 38797
This theorem is referenced by:  hdmapval2  38835  hdmap10lem  38842  hdmapeq0  38847  hdmapnzcl  38848  hdmapneg  38849  hdmapsub  38850  hdmap11  38851  hdmaprnlem3N  38853  hdmaprnlem3uN  38854  hdmaprnlem7N  38858  hdmaprnlem8N  38859  hdmaprnlem9N  38860  hdmaprnlem3eN  38861  hdmaprnN  38867  hdmap14lem2a  38870  hdmap14lem2N  38872  hdmap14lem3  38873  hdmap14lem4a  38874  hdmap14lem6  38876  hdmap14lem8  38878  hgmapval0  38895  hgmapval1  38896  hgmapadd  38897  hgmapmul  38898  hgmaprnlem1N  38899  hgmaprnlem2N  38900  hgmaprnlem4N  38902  hdmapipcl  38908  hdmapln1  38909  hdmaplna1  38910  hdmaplns1  38911  hdmaplnm1  38912  hdmaplna2  38913  hdmapglnm2  38914  hdmaplkr  38916  hdmapellkr  38917  hdmapip0  38918  hdmapinvlem1  38921  hdmapinvlem3  38923
  Copyright terms: Public domain W3C validator