![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnN | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprn.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprn.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprn.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hdmaprnN | ⊢ (𝜑 → ran 𝑆 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2771 | . . . 4 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
4 | hdmaprn.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
5 | hdmaprn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | hdmapfnN 37636 | . . 3 ⊢ (𝜑 → 𝑆 Fn (Base‘((DVecH‘𝐾)‘𝑊))) |
7 | hdmaprn.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmaprn.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
9 | 5 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) → 𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) | |
11 | 1, 2, 3, 7, 8, 4, 9, 10 | hdmapcl 37637 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) → (𝑆‘𝑠) ∈ 𝐷) |
12 | 11 | ralrimiva 3115 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))(𝑆‘𝑠) ∈ 𝐷) |
13 | fnfvrnss 6531 | . . 3 ⊢ ((𝑆 Fn (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ∀𝑠 ∈ (Base‘((DVecH‘𝐾)‘𝑊))(𝑆‘𝑠) ∈ 𝐷) → ran 𝑆 ⊆ 𝐷) | |
14 | 6, 12, 13 | syl2anc 573 | . 2 ⊢ (𝜑 → ran 𝑆 ⊆ 𝐷) |
15 | eqid 2771 | . . . . 5 ⊢ (LSpan‘((DVecH‘𝐾)‘𝑊)) = (LSpan‘((DVecH‘𝐾)‘𝑊)) | |
16 | eqid 2771 | . . . . 5 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
17 | eqid 2771 | . . . . 5 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
18 | eqid 2771 | . . . . 5 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
19 | 5 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → 𝑠 ∈ 𝐷) | |
21 | 1, 2, 3, 15, 7, 8, 16, 17, 18, 4, 19, 20 | hdmaprnlem17N 37670 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐷) → 𝑠 ∈ ran 𝑆) |
22 | 21 | ex 397 | . . 3 ⊢ (𝜑 → (𝑠 ∈ 𝐷 → 𝑠 ∈ ran 𝑆)) |
23 | 22 | ssrdv 3758 | . 2 ⊢ (𝜑 → 𝐷 ⊆ ran 𝑆) |
24 | 14, 23 | eqssd 3769 | 1 ⊢ (𝜑 → ran 𝑆 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ran crn 5250 Fn wfn 6024 ‘cfv 6029 Basecbs 16060 0gc0g 16304 LSpanclspn 19180 HLchlt 35155 LHypclh 35789 DVecHcdvh 36885 LCDualclcd 37393 mapdcmpd 37431 HDMapchdma 37599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-riotaBAD 34757 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-undef 7551 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-n0 11496 df-z 11581 df-uz 11890 df-fz 12530 df-struct 16062 df-ndx 16063 df-slot 16064 df-base 16066 df-sets 16067 df-ress 16068 df-plusg 16158 df-mulr 16159 df-sca 16161 df-vsca 16162 df-0g 16306 df-mre 16450 df-mrc 16451 df-acs 16453 df-preset 17132 df-poset 17150 df-plt 17162 df-lub 17178 df-glb 17179 df-join 17180 df-meet 17181 df-p0 17243 df-p1 17244 df-lat 17250 df-clat 17312 df-mgm 17446 df-sgrp 17488 df-mnd 17499 df-submnd 17540 df-grp 17629 df-minusg 17630 df-sbg 17631 df-subg 17795 df-cntz 17953 df-oppg 17979 df-lsm 18254 df-cmn 18398 df-abl 18399 df-mgp 18694 df-ur 18706 df-ring 18753 df-oppr 18827 df-dvdsr 18845 df-unit 18846 df-invr 18876 df-dvr 18887 df-drng 18955 df-lmod 19071 df-lss 19139 df-lsp 19181 df-lvec 19312 df-lsatoms 34781 df-lshyp 34782 df-lcv 34824 df-lfl 34863 df-lkr 34891 df-ldual 34929 df-oposet 34981 df-ol 34983 df-oml 34984 df-covers 35071 df-ats 35072 df-atl 35103 df-cvlat 35127 df-hlat 35156 df-llines 35303 df-lplanes 35304 df-lvols 35305 df-lines 35306 df-psubsp 35308 df-pmap 35309 df-padd 35601 df-lhyp 35793 df-laut 35794 df-ldil 35909 df-ltrn 35910 df-trl 35965 df-tgrp 36549 df-tendo 36561 df-edring 36563 df-dveca 36809 df-disoa 36836 df-dvech 36886 df-dib 36946 df-dic 36980 df-dih 37036 df-doch 37155 df-djh 37202 df-lcdual 37394 df-mapd 37432 df-hvmap 37564 df-hdmap1 37600 df-hdmap 37601 |
This theorem is referenced by: hdmapf1oN 37672 hgmaprnlem4N 37706 |
Copyright terms: Public domain | W3C validator |