![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hfsval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfsval | β’ ((π: ββΆβ β§ π: ββΆβ β§ π΄ β β) β ((π +fn π)βπ΄) = ((πβπ΄) + (πβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hfsmval 31246 | . . . 4 β’ ((π: ββΆβ β§ π: ββΆβ) β (π +fn π) = (π₯ β β β¦ ((πβπ₯) + (πβπ₯)))) | |
2 | 1 | fveq1d 6893 | . . 3 β’ ((π: ββΆβ β§ π: ββΆβ) β ((π +fn π)βπ΄) = ((π₯ β β β¦ ((πβπ₯) + (πβπ₯)))βπ΄)) |
3 | fveq2 6891 | . . . . 5 β’ (π₯ = π΄ β (πβπ₯) = (πβπ΄)) | |
4 | fveq2 6891 | . . . . 5 β’ (π₯ = π΄ β (πβπ₯) = (πβπ΄)) | |
5 | 3, 4 | oveq12d 7429 | . . . 4 β’ (π₯ = π΄ β ((πβπ₯) + (πβπ₯)) = ((πβπ΄) + (πβπ΄))) |
6 | eqid 2732 | . . . 4 β’ (π₯ β β β¦ ((πβπ₯) + (πβπ₯))) = (π₯ β β β¦ ((πβπ₯) + (πβπ₯))) | |
7 | ovex 7444 | . . . 4 β’ ((πβπ΄) + (πβπ΄)) β V | |
8 | 5, 6, 7 | fvmpt 6998 | . . 3 β’ (π΄ β β β ((π₯ β β β¦ ((πβπ₯) + (πβπ₯)))βπ΄) = ((πβπ΄) + (πβπ΄))) |
9 | 2, 8 | sylan9eq 2792 | . 2 β’ (((π: ββΆβ β§ π: ββΆβ) β§ π΄ β β) β ((π +fn π)βπ΄) = ((πβπ΄) + (πβπ΄))) |
10 | 9 | 3impa 1110 | 1 β’ ((π: ββΆβ β§ π: ββΆβ β§ π΄ β β) β ((π +fn π)βπ΄) = ((πβπ΄) + (πβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcc 11110 + caddc 11115 βchba 30427 +fn chfs 30449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-hilex 30507 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-hfsum 31241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |