| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hfsval | Structured version Visualization version GIF version | ||
| Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hfsval | ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hfsmval 31724 | . . . 4 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) | |
| 2 | 1 | fveq1d 6883 | . . 3 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))‘𝐴)) |
| 3 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
| 4 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7428 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) + (𝑇‘𝑥)) = ((𝑆‘𝐴) + (𝑇‘𝐴))) |
| 6 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) | |
| 7 | ovex 7443 | . . . 4 ⊢ ((𝑆‘𝐴) + (𝑇‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6991 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) |
| 9 | 2, 8 | sylan9eq 2791 | . 2 ⊢ (((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) |
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 + caddc 11137 ℋchba 30905 +fn chfs 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-hfsum 31719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |