HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfsval Structured version   Visualization version   GIF version

Theorem hfsval 31673
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hfsval ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))

Proof of Theorem hfsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hfsmval 31668 . . . 4 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
21fveq1d 6895 . . 3 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))‘𝐴))
3 fveq2 6893 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
4 fveq2 6893 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7434 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑆𝐴) + (𝑇𝐴)))
6 eqid 2726 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))
7 ovex 7449 . . . 4 ((𝑆𝐴) + (𝑇𝐴)) ∈ V
85, 6, 7fvmpt 7001 . . 3 (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
92, 8sylan9eq 2786 . 2 (((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
1093impa 1107 1 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  cc 11147   + caddc 11152  chba 30849   +fn chfs 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-hilex 30929
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8849  df-hfsum 31663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator