HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfsval Structured version   Visualization version   GIF version

Theorem hfsval 31729
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hfsval ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))

Proof of Theorem hfsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hfsmval 31724 . . . 4 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
21fveq1d 6883 . . 3 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))‘𝐴))
3 fveq2 6881 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
4 fveq2 6881 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7428 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑆𝐴) + (𝑇𝐴)))
6 eqid 2736 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))
7 ovex 7443 . . . 4 ((𝑆𝐴) + (𝑇𝐴)) ∈ V
85, 6, 7fvmpt 6991 . . 3 (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥)))‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
92, 8sylan9eq 2791 . 2 (((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
1093impa 1109 1 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cc 11132   + caddc 11137  chba 30905   +fn chfs 30927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-hfsum 31719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator