|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > hfsval | Structured version Visualization version GIF version | ||
| Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hfsval | ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hfsmval 31758 | . . . 4 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) | |
| 2 | 1 | fveq1d 6907 | . . 3 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))‘𝐴)) | 
| 3 | fveq2 6905 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
| 4 | fveq2 6905 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7450 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) + (𝑇‘𝑥)) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | 
| 6 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) | |
| 7 | ovex 7465 | . . . 4 ⊢ ((𝑆‘𝐴) + (𝑇‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 7015 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | 
| 9 | 2, 8 | sylan9eq 2796 | . 2 ⊢ (((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | 
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ) → ((𝑆 +fn 𝑇)‘𝐴) = ((𝑆‘𝐴) + (𝑇‘𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5224 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 + caddc 11159 ℋchba 30939 +fn chfs 30961 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-hilex 31019 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-hfsum 31753 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |