HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodval Structured version   Visualization version   GIF version

Theorem hodval 31720
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hodval ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))

Proof of Theorem hodval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hodmval 31715 . . . 4 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))))
21fveq1d 6824 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴))
3 fveq2 6822 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
4 fveq2 6822 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7364 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝐴) − (𝑇𝐴)))
6 eqid 2731 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))
7 ovex 7379 . . . 4 ((𝑆𝐴) − (𝑇𝐴)) ∈ V
85, 6, 7fvmpt 6929 . . 3 (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
92, 8sylan9eq 2786 . 2 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
1093impa 1109 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  chba 30897   cmv 30903  op chod 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-hilex 30977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-hodif 31710
This theorem is referenced by:  hodcl  31725  hodsi  31753  hocsubdiri  31758  honegsubi  31774  hoddii  31967  lnopeqi  31986  leop2  32102  pjddii  32134  pjssposi  32150  pjssdif2i  32152
  Copyright terms: Public domain W3C validator