HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodval Structured version   Visualization version   GIF version

Theorem hodval 31675
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hodval ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))

Proof of Theorem hodval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hodmval 31670 . . . 4 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))))
21fveq1d 6903 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴))
3 fveq2 6901 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
4 fveq2 6901 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7442 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝐴) − (𝑇𝐴)))
6 eqid 2726 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))
7 ovex 7457 . . . 4 ((𝑆𝐴) − (𝑇𝐴)) ∈ V
85, 6, 7fvmpt 7009 . . 3 (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
92, 8sylan9eq 2786 . 2 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
1093impa 1107 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cmpt 5236  wf 6550  cfv 6554  (class class class)co 7424  chba 30852   cmv 30858  op chod 30873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-hilex 30932
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-hodif 31665
This theorem is referenced by:  hodcl  31680  hodsi  31708  hocsubdiri  31713  honegsubi  31729  hoddii  31922  lnopeqi  31941  leop2  32057  pjddii  32089  pjssposi  32105  pjssdif2i  32107
  Copyright terms: Public domain W3C validator