HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodval Structured version   Visualization version   GIF version

Theorem hodval 30149
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hodval ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))

Proof of Theorem hodval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hodmval 30144 . . . 4 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))))
21fveq1d 6806 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴))
3 fveq2 6804 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
4 fveq2 6804 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7325 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥) − (𝑇𝑥)) = ((𝑆𝐴) − (𝑇𝐴)))
6 eqid 2736 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))
7 ovex 7340 . . . 4 ((𝑆𝐴) − (𝑇𝐴)) ∈ V
85, 6, 7fvmpt 6907 . . 3 (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆𝑥) − (𝑇𝑥)))‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
92, 8sylan9eq 2796 . 2 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
1093impa 1110 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆op 𝑇)‘𝐴) = ((𝑆𝐴) − (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cmpt 5164  wf 6454  cfv 6458  (class class class)co 7307  chba 29326   cmv 29332  op chod 29347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-hilex 29406
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-hodif 30139
This theorem is referenced by:  hodcl  30154  hodsi  30182  hocsubdiri  30187  honegsubi  30203  hoddii  30396  lnopeqi  30415  leop2  30531  pjddii  30563  pjssposi  30579  pjssdif2i  30581
  Copyright terms: Public domain W3C validator