| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodval | Structured version Visualization version GIF version | ||
| Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hodval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝐴) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hodmval 31673 | . . . 4 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) | |
| 2 | 1 | fveq1d 6863 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 −op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))‘𝐴)) |
| 3 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
| 4 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7408 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) |
| 6 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
| 7 | ovex 7423 | . . . 4 ⊢ ((𝑆‘𝐴) −ℎ (𝑇‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6971 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) |
| 9 | 2, 8 | sylan9eq 2785 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝐴) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) |
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝐴) = ((𝑆‘𝐴) −ℎ (𝑇‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 −ℎ cmv 30861 −op chod 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-hodif 31668 |
| This theorem is referenced by: hodcl 31683 hodsi 31711 hocsubdiri 31716 honegsubi 31732 hoddii 31925 lnopeqi 31944 leop2 32060 pjddii 32092 pjssposi 32108 pjssdif2i 32110 |
| Copyright terms: Public domain | W3C validator |