HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfmval Structured version   Visualization version   GIF version

Theorem hfmval 30106
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hfmval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))

Proof of Theorem hfmval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hfmmval 30101 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
21fveq1d 6776 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝐴 ·fn 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵))
3 fveq2 6774 . . . . 5 (𝑥 = 𝐵 → (𝑇𝑥) = (𝑇𝐵))
43oveq2d 7291 . . . 4 (𝑥 = 𝐵 → (𝐴 · (𝑇𝑥)) = (𝐴 · (𝑇𝐵)))
5 eqid 2738 . . . 4 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))
6 ovex 7308 . . . 4 (𝐴 · (𝑇𝐵)) ∈ V
74, 5, 6fvmpt 6875 . . 3 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵) = (𝐴 · (𝑇𝐵)))
82, 7sylan9eq 2798 . 2 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
983impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869   · cmul 10876  chba 29281   ·fn chft 29304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-hfmul 30096
This theorem is referenced by:  kbass2  30479  kbass3  30480
  Copyright terms: Public domain W3C validator