![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hfmval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfmval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hfmmval 29170 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6448 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → ((𝐴 ·fn 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))‘𝐵)) |
3 | fveq2 6446 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑇‘𝑥) = (𝑇‘𝐵)) | |
4 | 3 | oveq2d 6938 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 · (𝑇‘𝑥)) = (𝐴 · (𝑇‘𝐵))) |
5 | eqid 2777 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) | |
6 | ovex 6954 | . . . 4 ⊢ (𝐴 · (𝑇‘𝐵)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6542 | . . 3 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))‘𝐵) = (𝐴 · (𝑇‘𝐵))) |
8 | 2, 7 | sylan9eq 2833 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇‘𝐵))) |
9 | 8 | 3impa 1097 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·fn 𝑇)‘𝐵) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ↦ cmpt 4965 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 · cmul 10277 ℋchba 28348 ·fn chft 28371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-hilex 28428 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 df-hfmul 29165 |
This theorem is referenced by: kbass2 29548 kbass3 29549 |
Copyright terms: Public domain | W3C validator |