| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23132 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 (class class class)co 7390 Topctop 22787 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 |
| This theorem is referenced by: cnco 23160 cnclima 23162 cnntri 23165 cnclsi 23166 cnss1 23170 cnss2 23171 cncnpi 23172 cncnp2 23175 cnrest 23179 cnrest2 23180 cnt0 23240 cnt1 23244 cnhaus 23248 dnsconst 23272 cncmp 23286 rncmp 23290 imacmp 23291 cnconn 23316 connima 23319 conncn 23320 2ndcomap 23352 kgencn2 23451 kgencn3 23452 txcnmpt 23518 uptx 23519 txcn 23520 hauseqlcld 23540 xkohaus 23547 xkoptsub 23548 xkopjcn 23550 xkoco1cn 23551 xkoco2cn 23552 xkococnlem 23553 cnmpt11f 23558 cnmpt21f 23566 hmeocnv 23656 hmeores 23665 txhmeo 23697 cnextfres 23963 bndth 24864 evth 24865 evth2 24866 htpyco2 24885 phtpyco2 24896 reparphti 24903 reparphtiOLD 24904 copco 24925 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 pcorev2 24935 hauseqcn 33895 pl1cn 33952 rrhf 33995 esumcocn 34077 cnmbfm 34261 cnpconn 35224 ptpconn 35227 sconnpi1 35233 txsconnlem 35234 cvxsconn 35237 cvmseu 35270 cvmopnlem 35272 cvmfolem 35273 cvmliftmolem1 35275 cvmliftmolem2 35276 cvmliftlem3 35281 cvmliftlem6 35284 cvmliftlem7 35285 cvmliftlem8 35286 cvmliftlem9 35287 cvmliftlem10 35288 cvmliftlem11 35289 cvmliftlem13 35290 cvmliftlem15 35292 cvmlift2lem3 35299 cvmlift2lem5 35301 cvmlift2lem7 35303 cvmlift2lem9 35305 cvmlift2lem10 35306 cvmliftphtlem 35311 cvmlift3lem1 35313 cvmlift3lem2 35314 cvmlift3lem4 35316 cvmlift3lem5 35317 cvmlift3lem6 35318 cvmlift3lem7 35319 cvmlift3lem8 35320 cvmlift3lem9 35321 poimirlem31 37652 poimir 37654 broucube 37655 cnres2 37764 cnresima 37765 hausgraph 43201 refsum2cnlem1 45038 itgsubsticclem 45980 stoweidlem62 46067 cnfsmf 46745 cnneiima 48909 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |