Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22398 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simpld 495 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∀wral 3065 ∪ cuni 4840 ◡ccnv 5589 “ cima 5593 ⟶wf 6433 (class class class)co 7284 Topctop 22051 Cn ccn 22384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-map 8626 df-top 22052 df-topon 22069 df-cn 22387 |
This theorem is referenced by: cnco 22426 cnclima 22428 cnntri 22431 cnclsi 22432 cnss1 22436 cnss2 22437 cncnpi 22438 cncnp2 22441 cnrest 22445 cnrest2 22446 cnt0 22506 cnt1 22510 cnhaus 22514 dnsconst 22538 cncmp 22552 rncmp 22556 imacmp 22557 cnconn 22582 connima 22585 conncn 22586 2ndcomap 22618 kgencn2 22717 kgencn3 22718 txcnmpt 22784 uptx 22785 txcn 22786 hauseqlcld 22806 xkohaus 22813 xkoptsub 22814 xkopjcn 22816 xkoco1cn 22817 xkoco2cn 22818 xkococnlem 22819 cnmpt11f 22824 cnmpt21f 22832 hmeocnv 22922 hmeores 22931 txhmeo 22963 cnextfres 23229 bndth 24130 evth 24131 evth2 24132 htpyco2 24151 phtpyco2 24162 reparphti 24169 copco 24190 pcopt 24194 pcopt2 24195 pcoass 24196 pcorevlem 24198 pcorev2 24200 hauseqcn 31857 pl1cn 31914 rrhf 31957 esumcocn 32057 cnmbfm 32239 cnpconn 33201 ptpconn 33204 sconnpi1 33210 txsconnlem 33211 cvxsconn 33214 cvmseu 33247 cvmopnlem 33249 cvmfolem 33250 cvmliftmolem1 33252 cvmliftmolem2 33253 cvmliftlem3 33258 cvmliftlem6 33261 cvmliftlem7 33262 cvmliftlem8 33263 cvmliftlem9 33264 cvmliftlem10 33265 cvmliftlem11 33266 cvmliftlem13 33267 cvmliftlem15 33269 cvmlift2lem3 33276 cvmlift2lem5 33278 cvmlift2lem7 33280 cvmlift2lem9 33282 cvmlift2lem10 33283 cvmliftphtlem 33288 cvmlift3lem1 33290 cvmlift3lem2 33291 cvmlift3lem4 33293 cvmlift3lem5 33294 cvmlift3lem6 33295 cvmlift3lem7 33296 cvmlift3lem8 33297 cvmlift3lem9 33298 poimirlem31 35817 poimir 35819 broucube 35820 cnres2 35930 cnresima 35931 hausgraph 41044 refsum2cnlem1 42587 itgsubsticclem 43523 stoweidlem62 43610 cnfsmf 44285 cnneiima 46221 sepfsepc 46232 |
Copyright terms: Public domain | W3C validator |