| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23123 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 (class class class)co 7349 Topctop 22778 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: cnco 23151 cnclima 23153 cnntri 23156 cnclsi 23157 cnss1 23161 cnss2 23162 cncnpi 23163 cncnp2 23166 cnrest 23170 cnrest2 23171 cnt0 23231 cnt1 23235 cnhaus 23239 dnsconst 23263 cncmp 23277 rncmp 23281 imacmp 23282 cnconn 23307 connima 23310 conncn 23311 2ndcomap 23343 kgencn2 23442 kgencn3 23443 txcnmpt 23509 uptx 23510 txcn 23511 hauseqlcld 23531 xkohaus 23538 xkoptsub 23539 xkopjcn 23541 xkoco1cn 23542 xkoco2cn 23543 xkococnlem 23544 cnmpt11f 23549 cnmpt21f 23557 hmeocnv 23647 hmeores 23656 txhmeo 23688 cnextfres 23954 bndth 24855 evth 24856 evth2 24857 htpyco2 24876 phtpyco2 24887 reparphti 24894 reparphtiOLD 24895 copco 24916 pcopt 24920 pcopt2 24921 pcoass 24922 pcorevlem 24924 pcorev2 24926 hauseqcn 33881 pl1cn 33938 rrhf 33981 esumcocn 34063 cnmbfm 34247 cnpconn 35223 ptpconn 35226 sconnpi1 35232 txsconnlem 35233 cvxsconn 35236 cvmseu 35269 cvmopnlem 35271 cvmfolem 35272 cvmliftmolem1 35274 cvmliftmolem2 35275 cvmliftlem3 35280 cvmliftlem6 35283 cvmliftlem7 35284 cvmliftlem8 35285 cvmliftlem9 35286 cvmliftlem10 35287 cvmliftlem11 35288 cvmliftlem13 35289 cvmliftlem15 35291 cvmlift2lem3 35298 cvmlift2lem5 35300 cvmlift2lem7 35302 cvmlift2lem9 35304 cvmlift2lem10 35305 cvmliftphtlem 35310 cvmlift3lem1 35312 cvmlift3lem2 35313 cvmlift3lem4 35315 cvmlift3lem5 35316 cvmlift3lem6 35317 cvmlift3lem7 35318 cvmlift3lem8 35319 cvmlift3lem9 35320 poimirlem31 37651 poimir 37653 broucube 37654 cnres2 37763 cnresima 37764 hausgraph 43198 refsum2cnlem1 45035 itgsubsticclem 45976 stoweidlem62 46063 cnfsmf 46741 cnneiima 48921 sepfsepc 48932 |
| Copyright terms: Public domain | W3C validator |