| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23158 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 Topctop 22813 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 |
| This theorem is referenced by: cnco 23186 cnclima 23188 cnntri 23191 cnclsi 23192 cnss1 23196 cnss2 23197 cncnpi 23198 cncnp2 23201 cnrest 23205 cnrest2 23206 cnt0 23266 cnt1 23270 cnhaus 23274 dnsconst 23298 cncmp 23312 rncmp 23316 imacmp 23317 cnconn 23342 connima 23345 conncn 23346 2ndcomap 23378 kgencn2 23477 kgencn3 23478 txcnmpt 23544 uptx 23545 txcn 23546 hauseqlcld 23566 xkohaus 23573 xkoptsub 23574 xkopjcn 23576 xkoco1cn 23577 xkoco2cn 23578 xkococnlem 23579 cnmpt11f 23584 cnmpt21f 23592 hmeocnv 23682 hmeores 23691 txhmeo 23723 cnextfres 23989 bndth 24890 evth 24891 evth2 24892 htpyco2 24911 phtpyco2 24922 reparphti 24929 reparphtiOLD 24930 copco 24951 pcopt 24955 pcopt2 24956 pcoass 24957 pcorevlem 24959 pcorev2 24961 hauseqcn 33881 pl1cn 33938 rrhf 33981 esumcocn 34063 cnmbfm 34247 cnpconn 35210 ptpconn 35213 sconnpi1 35219 txsconnlem 35220 cvxsconn 35223 cvmseu 35256 cvmopnlem 35258 cvmfolem 35259 cvmliftmolem1 35261 cvmliftmolem2 35262 cvmliftlem3 35267 cvmliftlem6 35270 cvmliftlem7 35271 cvmliftlem8 35272 cvmliftlem9 35273 cvmliftlem10 35274 cvmliftlem11 35275 cvmliftlem13 35276 cvmliftlem15 35278 cvmlift2lem3 35285 cvmlift2lem5 35287 cvmlift2lem7 35289 cvmlift2lem9 35291 cvmlift2lem10 35292 cvmliftphtlem 35297 cvmlift3lem1 35299 cvmlift3lem2 35300 cvmlift3lem4 35302 cvmlift3lem5 35303 cvmlift3lem6 35304 cvmlift3lem7 35305 cvmlift3lem8 35306 cvmlift3lem9 35307 poimirlem31 37638 poimir 37640 broucube 37641 cnres2 37750 cnresima 37751 hausgraph 43187 refsum2cnlem1 45024 itgsubsticclem 45966 stoweidlem62 46053 cnfsmf 46731 cnneiima 48898 sepfsepc 48909 |
| Copyright terms: Public domain | W3C validator |