Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22495 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 498 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simpld 496 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∪ cuni 4857 ◡ccnv 5624 “ cima 5628 ⟶wf 6480 (class class class)co 7342 Topctop 22148 Cn ccn 22481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-map 8693 df-top 22149 df-topon 22166 df-cn 22484 |
This theorem is referenced by: cnco 22523 cnclima 22525 cnntri 22528 cnclsi 22529 cnss1 22533 cnss2 22534 cncnpi 22535 cncnp2 22538 cnrest 22542 cnrest2 22543 cnt0 22603 cnt1 22607 cnhaus 22611 dnsconst 22635 cncmp 22649 rncmp 22653 imacmp 22654 cnconn 22679 connima 22682 conncn 22683 2ndcomap 22715 kgencn2 22814 kgencn3 22815 txcnmpt 22881 uptx 22882 txcn 22883 hauseqlcld 22903 xkohaus 22910 xkoptsub 22911 xkopjcn 22913 xkoco1cn 22914 xkoco2cn 22915 xkococnlem 22916 cnmpt11f 22921 cnmpt21f 22929 hmeocnv 23019 hmeores 23028 txhmeo 23060 cnextfres 23326 bndth 24227 evth 24228 evth2 24229 htpyco2 24248 phtpyco2 24259 reparphti 24266 copco 24287 pcopt 24291 pcopt2 24292 pcoass 24293 pcorevlem 24295 pcorev2 24297 hauseqcn 32144 pl1cn 32201 rrhf 32244 esumcocn 32344 cnmbfm 32528 cnpconn 33489 ptpconn 33492 sconnpi1 33498 txsconnlem 33499 cvxsconn 33502 cvmseu 33535 cvmopnlem 33537 cvmfolem 33538 cvmliftmolem1 33540 cvmliftmolem2 33541 cvmliftlem3 33546 cvmliftlem6 33549 cvmliftlem7 33550 cvmliftlem8 33551 cvmliftlem9 33552 cvmliftlem10 33553 cvmliftlem11 33554 cvmliftlem13 33555 cvmliftlem15 33557 cvmlift2lem3 33564 cvmlift2lem5 33566 cvmlift2lem7 33568 cvmlift2lem9 33570 cvmlift2lem10 33571 cvmliftphtlem 33576 cvmlift3lem1 33578 cvmlift3lem2 33579 cvmlift3lem4 33581 cvmlift3lem5 33582 cvmlift3lem6 33583 cvmlift3lem7 33584 cvmlift3lem8 33585 cvmlift3lem9 33586 poimirlem31 35962 poimir 35964 broucube 35965 cnres2 36075 cnresima 36076 hausgraph 41349 refsum2cnlem1 42951 itgsubsticclem 43902 stoweidlem62 43989 cnfsmf 44665 cnneiima 46626 sepfsepc 46637 |
Copyright terms: Public domain | W3C validator |