![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 23267 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 (class class class)co 7448 Topctop 22920 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: cnco 23295 cnclima 23297 cnntri 23300 cnclsi 23301 cnss1 23305 cnss2 23306 cncnpi 23307 cncnp2 23310 cnrest 23314 cnrest2 23315 cnt0 23375 cnt1 23379 cnhaus 23383 dnsconst 23407 cncmp 23421 rncmp 23425 imacmp 23426 cnconn 23451 connima 23454 conncn 23455 2ndcomap 23487 kgencn2 23586 kgencn3 23587 txcnmpt 23653 uptx 23654 txcn 23655 hauseqlcld 23675 xkohaus 23682 xkoptsub 23683 xkopjcn 23685 xkoco1cn 23686 xkoco2cn 23687 xkococnlem 23688 cnmpt11f 23693 cnmpt21f 23701 hmeocnv 23791 hmeores 23800 txhmeo 23832 cnextfres 24098 bndth 25009 evth 25010 evth2 25011 htpyco2 25030 phtpyco2 25041 reparphti 25048 reparphtiOLD 25049 copco 25070 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevlem 25078 pcorev2 25080 hauseqcn 33844 pl1cn 33901 rrhf 33944 esumcocn 34044 cnmbfm 34228 cnpconn 35198 ptpconn 35201 sconnpi1 35207 txsconnlem 35208 cvxsconn 35211 cvmseu 35244 cvmopnlem 35246 cvmfolem 35247 cvmliftmolem1 35249 cvmliftmolem2 35250 cvmliftlem3 35255 cvmliftlem6 35258 cvmliftlem7 35259 cvmliftlem8 35260 cvmliftlem9 35261 cvmliftlem10 35262 cvmliftlem11 35263 cvmliftlem13 35264 cvmliftlem15 35266 cvmlift2lem3 35273 cvmlift2lem5 35275 cvmlift2lem7 35277 cvmlift2lem9 35279 cvmlift2lem10 35280 cvmliftphtlem 35285 cvmlift3lem1 35287 cvmlift3lem2 35288 cvmlift3lem4 35290 cvmlift3lem5 35291 cvmlift3lem6 35292 cvmlift3lem7 35293 cvmlift3lem8 35294 cvmlift3lem9 35295 poimirlem31 37611 poimir 37613 broucube 37614 cnres2 37723 cnresima 37724 hausgraph 43166 refsum2cnlem1 44937 itgsubsticclem 45896 stoweidlem62 45983 cnfsmf 46661 cnneiima 48596 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |