Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22297 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 (class class class)co 7255 Topctop 21950 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: cnco 22325 cnclima 22327 cnntri 22330 cnclsi 22331 cnss1 22335 cnss2 22336 cncnpi 22337 cncnp2 22340 cnrest 22344 cnrest2 22345 cnt0 22405 cnt1 22409 cnhaus 22413 dnsconst 22437 cncmp 22451 rncmp 22455 imacmp 22456 cnconn 22481 connima 22484 conncn 22485 2ndcomap 22517 kgencn2 22616 kgencn3 22617 txcnmpt 22683 uptx 22684 txcn 22685 hauseqlcld 22705 xkohaus 22712 xkoptsub 22713 xkopjcn 22715 xkoco1cn 22716 xkoco2cn 22717 xkococnlem 22718 cnmpt11f 22723 cnmpt21f 22731 hmeocnv 22821 hmeores 22830 txhmeo 22862 cnextfres 23128 bndth 24027 evth 24028 evth2 24029 htpyco2 24048 phtpyco2 24059 reparphti 24066 copco 24087 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 pcorev2 24097 hauseqcn 31750 pl1cn 31807 rrhf 31848 esumcocn 31948 cnmbfm 32130 cnpconn 33092 ptpconn 33095 sconnpi1 33101 txsconnlem 33102 cvxsconn 33105 cvmseu 33138 cvmopnlem 33140 cvmfolem 33141 cvmliftmolem1 33143 cvmliftmolem2 33144 cvmliftlem3 33149 cvmliftlem6 33152 cvmliftlem7 33153 cvmliftlem8 33154 cvmliftlem9 33155 cvmliftlem10 33156 cvmliftlem11 33157 cvmliftlem13 33158 cvmliftlem15 33160 cvmlift2lem3 33167 cvmlift2lem5 33169 cvmlift2lem7 33171 cvmlift2lem9 33173 cvmlift2lem10 33174 cvmliftphtlem 33179 cvmlift3lem1 33181 cvmlift3lem2 33182 cvmlift3lem4 33184 cvmlift3lem5 33185 cvmlift3lem6 33186 cvmlift3lem7 33187 cvmlift3lem8 33188 cvmlift3lem9 33189 poimirlem31 35735 poimir 35737 broucube 35738 cnres2 35848 cnresima 35849 hausgraph 40953 refsum2cnlem1 42469 itgsubsticclem 43406 stoweidlem62 43493 cnfsmf 44163 cnneiima 46098 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |