![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version |
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 23262 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∪ cuni 4912 ◡ccnv 5688 “ cima 5692 ⟶wf 6559 (class class class)co 7431 Topctop 22915 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 |
This theorem is referenced by: cnco 23290 cnclima 23292 cnntri 23295 cnclsi 23296 cnss1 23300 cnss2 23301 cncnpi 23302 cncnp2 23305 cnrest 23309 cnrest2 23310 cnt0 23370 cnt1 23374 cnhaus 23378 dnsconst 23402 cncmp 23416 rncmp 23420 imacmp 23421 cnconn 23446 connima 23449 conncn 23450 2ndcomap 23482 kgencn2 23581 kgencn3 23582 txcnmpt 23648 uptx 23649 txcn 23650 hauseqlcld 23670 xkohaus 23677 xkoptsub 23678 xkopjcn 23680 xkoco1cn 23681 xkoco2cn 23682 xkococnlem 23683 cnmpt11f 23688 cnmpt21f 23696 hmeocnv 23786 hmeores 23795 txhmeo 23827 cnextfres 24093 bndth 25004 evth 25005 evth2 25006 htpyco2 25025 phtpyco2 25036 reparphti 25043 reparphtiOLD 25044 copco 25065 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevlem 25073 pcorev2 25075 hauseqcn 33859 pl1cn 33916 rrhf 33961 esumcocn 34061 cnmbfm 34245 cnpconn 35215 ptpconn 35218 sconnpi1 35224 txsconnlem 35225 cvxsconn 35228 cvmseu 35261 cvmopnlem 35263 cvmfolem 35264 cvmliftmolem1 35266 cvmliftmolem2 35267 cvmliftlem3 35272 cvmliftlem6 35275 cvmliftlem7 35276 cvmliftlem8 35277 cvmliftlem9 35278 cvmliftlem10 35279 cvmliftlem11 35280 cvmliftlem13 35281 cvmliftlem15 35283 cvmlift2lem3 35290 cvmlift2lem5 35292 cvmlift2lem7 35294 cvmlift2lem9 35296 cvmlift2lem10 35297 cvmliftphtlem 35302 cvmlift3lem1 35304 cvmlift3lem2 35305 cvmlift3lem4 35307 cvmlift3lem5 35308 cvmlift3lem6 35309 cvmlift3lem7 35310 cvmlift3lem8 35311 cvmlift3lem9 35312 poimirlem31 37638 poimir 37640 broucube 37641 cnres2 37750 cnresima 37751 hausgraph 43194 refsum2cnlem1 44975 itgsubsticclem 45931 stoweidlem62 46018 cnfsmf 46696 cnneiima 48713 sepfsepc 48724 |
Copyright terms: Public domain | W3C validator |