| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23176 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ cuni 4883 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 (class class class)co 7405 Topctop 22831 Cn ccn 23162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-top 22832 df-topon 22849 df-cn 23165 |
| This theorem is referenced by: cnco 23204 cnclima 23206 cnntri 23209 cnclsi 23210 cnss1 23214 cnss2 23215 cncnpi 23216 cncnp2 23219 cnrest 23223 cnrest2 23224 cnt0 23284 cnt1 23288 cnhaus 23292 dnsconst 23316 cncmp 23330 rncmp 23334 imacmp 23335 cnconn 23360 connima 23363 conncn 23364 2ndcomap 23396 kgencn2 23495 kgencn3 23496 txcnmpt 23562 uptx 23563 txcn 23564 hauseqlcld 23584 xkohaus 23591 xkoptsub 23592 xkopjcn 23594 xkoco1cn 23595 xkoco2cn 23596 xkococnlem 23597 cnmpt11f 23602 cnmpt21f 23610 hmeocnv 23700 hmeores 23709 txhmeo 23741 cnextfres 24007 bndth 24908 evth 24909 evth2 24910 htpyco2 24929 phtpyco2 24940 reparphti 24947 reparphtiOLD 24948 copco 24969 pcopt 24973 pcopt2 24974 pcoass 24975 pcorevlem 24977 pcorev2 24979 hauseqcn 33929 pl1cn 33986 rrhf 34029 esumcocn 34111 cnmbfm 34295 cnpconn 35252 ptpconn 35255 sconnpi1 35261 txsconnlem 35262 cvxsconn 35265 cvmseu 35298 cvmopnlem 35300 cvmfolem 35301 cvmliftmolem1 35303 cvmliftmolem2 35304 cvmliftlem3 35309 cvmliftlem6 35312 cvmliftlem7 35313 cvmliftlem8 35314 cvmliftlem9 35315 cvmliftlem10 35316 cvmliftlem11 35317 cvmliftlem13 35318 cvmliftlem15 35320 cvmlift2lem3 35327 cvmlift2lem5 35329 cvmlift2lem7 35331 cvmlift2lem9 35333 cvmlift2lem10 35334 cvmliftphtlem 35339 cvmlift3lem1 35341 cvmlift3lem2 35342 cvmlift3lem4 35344 cvmlift3lem5 35345 cvmlift3lem6 35346 cvmlift3lem7 35347 cvmlift3lem8 35348 cvmlift3lem9 35349 poimirlem31 37675 poimir 37677 broucube 37678 cnres2 37787 cnresima 37788 hausgraph 43229 refsum2cnlem1 45061 itgsubsticclem 46004 stoweidlem62 46091 cnfsmf 46769 cnneiima 48891 sepfsepc 48902 |
| Copyright terms: Public domain | W3C validator |