| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23161 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∪ cuni 4880 ◡ccnv 5650 “ cima 5654 ⟶wf 6523 (class class class)co 7399 Topctop 22816 Cn ccn 23147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-map 8836 df-top 22817 df-topon 22834 df-cn 23150 |
| This theorem is referenced by: cnco 23189 cnclima 23191 cnntri 23194 cnclsi 23195 cnss1 23199 cnss2 23200 cncnpi 23201 cncnp2 23204 cnrest 23208 cnrest2 23209 cnt0 23269 cnt1 23273 cnhaus 23277 dnsconst 23301 cncmp 23315 rncmp 23319 imacmp 23320 cnconn 23345 connima 23348 conncn 23349 2ndcomap 23381 kgencn2 23480 kgencn3 23481 txcnmpt 23547 uptx 23548 txcn 23549 hauseqlcld 23569 xkohaus 23576 xkoptsub 23577 xkopjcn 23579 xkoco1cn 23580 xkoco2cn 23581 xkococnlem 23582 cnmpt11f 23587 cnmpt21f 23595 hmeocnv 23685 hmeores 23694 txhmeo 23726 cnextfres 23992 bndth 24893 evth 24894 evth2 24895 htpyco2 24914 phtpyco2 24925 reparphti 24932 reparphtiOLD 24933 copco 24954 pcopt 24958 pcopt2 24959 pcoass 24960 pcorevlem 24962 pcorev2 24964 hauseqcn 33837 pl1cn 33894 rrhf 33937 esumcocn 34019 cnmbfm 34203 cnpconn 35173 ptpconn 35176 sconnpi1 35182 txsconnlem 35183 cvxsconn 35186 cvmseu 35219 cvmopnlem 35221 cvmfolem 35222 cvmliftmolem1 35224 cvmliftmolem2 35225 cvmliftlem3 35230 cvmliftlem6 35233 cvmliftlem7 35234 cvmliftlem8 35235 cvmliftlem9 35236 cvmliftlem10 35237 cvmliftlem11 35238 cvmliftlem13 35239 cvmliftlem15 35241 cvmlift2lem3 35248 cvmlift2lem5 35250 cvmlift2lem7 35252 cvmlift2lem9 35254 cvmlift2lem10 35255 cvmliftphtlem 35260 cvmlift3lem1 35262 cvmlift3lem2 35263 cvmlift3lem4 35265 cvmlift3lem5 35266 cvmlift3lem6 35267 cvmlift3lem7 35268 cvmlift3lem8 35269 cvmlift3lem9 35270 poimirlem31 37596 poimir 37598 broucube 37599 cnres2 37708 cnresima 37709 hausgraph 43154 refsum2cnlem1 44988 itgsubsticclem 45934 stoweidlem62 46021 cnfsmf 46699 cnneiima 48770 sepfsepc 48781 |
| Copyright terms: Public domain | W3C validator |