| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23125 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4871 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 (class class class)co 7387 Topctop 22780 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: cnco 23153 cnclima 23155 cnntri 23158 cnclsi 23159 cnss1 23163 cnss2 23164 cncnpi 23165 cncnp2 23168 cnrest 23172 cnrest2 23173 cnt0 23233 cnt1 23237 cnhaus 23241 dnsconst 23265 cncmp 23279 rncmp 23283 imacmp 23284 cnconn 23309 connima 23312 conncn 23313 2ndcomap 23345 kgencn2 23444 kgencn3 23445 txcnmpt 23511 uptx 23512 txcn 23513 hauseqlcld 23533 xkohaus 23540 xkoptsub 23541 xkopjcn 23543 xkoco1cn 23544 xkoco2cn 23545 xkococnlem 23546 cnmpt11f 23551 cnmpt21f 23559 hmeocnv 23649 hmeores 23658 txhmeo 23690 cnextfres 23956 bndth 24857 evth 24858 evth2 24859 htpyco2 24878 phtpyco2 24889 reparphti 24896 reparphtiOLD 24897 copco 24918 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 pcorev2 24928 hauseqcn 33888 pl1cn 33945 rrhf 33988 esumcocn 34070 cnmbfm 34254 cnpconn 35217 ptpconn 35220 sconnpi1 35226 txsconnlem 35227 cvxsconn 35230 cvmseu 35263 cvmopnlem 35265 cvmfolem 35266 cvmliftmolem1 35268 cvmliftmolem2 35269 cvmliftlem3 35274 cvmliftlem6 35277 cvmliftlem7 35278 cvmliftlem8 35279 cvmliftlem9 35280 cvmliftlem10 35281 cvmliftlem11 35282 cvmliftlem13 35283 cvmliftlem15 35285 cvmlift2lem3 35292 cvmlift2lem5 35294 cvmlift2lem7 35296 cvmlift2lem9 35298 cvmlift2lem10 35299 cvmliftphtlem 35304 cvmlift3lem1 35306 cvmlift3lem2 35307 cvmlift3lem4 35309 cvmlift3lem5 35310 cvmlift3lem6 35311 cvmlift3lem7 35312 cvmlift3lem8 35313 cvmlift3lem9 35314 poimirlem31 37645 poimir 37647 broucube 37648 cnres2 37757 cnresima 37758 hausgraph 43194 refsum2cnlem1 45031 itgsubsticclem 45973 stoweidlem62 46060 cnfsmf 46738 cnneiima 48905 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |