| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23153 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 (class class class)co 7346 Topctop 22808 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: cnco 23181 cnclima 23183 cnntri 23186 cnclsi 23187 cnss1 23191 cnss2 23192 cncnpi 23193 cncnp2 23196 cnrest 23200 cnrest2 23201 cnt0 23261 cnt1 23265 cnhaus 23269 dnsconst 23293 cncmp 23307 rncmp 23311 imacmp 23312 cnconn 23337 connima 23340 conncn 23341 2ndcomap 23373 kgencn2 23472 kgencn3 23473 txcnmpt 23539 uptx 23540 txcn 23541 hauseqlcld 23561 xkohaus 23568 xkoptsub 23569 xkopjcn 23571 xkoco1cn 23572 xkoco2cn 23573 xkococnlem 23574 cnmpt11f 23579 cnmpt21f 23587 hmeocnv 23677 hmeores 23686 txhmeo 23718 cnextfres 23984 bndth 24884 evth 24885 evth2 24886 htpyco2 24905 phtpyco2 24916 reparphti 24923 reparphtiOLD 24924 copco 24945 pcopt 24949 pcopt2 24950 pcoass 24951 pcorevlem 24953 pcorev2 24955 hauseqcn 33911 pl1cn 33968 rrhf 34011 esumcocn 34093 cnmbfm 34276 cnpconn 35274 ptpconn 35277 sconnpi1 35283 txsconnlem 35284 cvxsconn 35287 cvmseu 35320 cvmopnlem 35322 cvmfolem 35323 cvmliftmolem1 35325 cvmliftmolem2 35326 cvmliftlem3 35331 cvmliftlem6 35334 cvmliftlem7 35335 cvmliftlem8 35336 cvmliftlem9 35337 cvmliftlem10 35338 cvmliftlem11 35339 cvmliftlem13 35340 cvmliftlem15 35342 cvmlift2lem3 35349 cvmlift2lem5 35351 cvmlift2lem7 35353 cvmlift2lem9 35355 cvmlift2lem10 35356 cvmliftphtlem 35361 cvmlift3lem1 35363 cvmlift3lem2 35364 cvmlift3lem4 35366 cvmlift3lem5 35367 cvmlift3lem6 35368 cvmlift3lem7 35369 cvmlift3lem8 35370 cvmlift3lem9 35371 poimirlem31 37690 poimir 37692 broucube 37693 cnres2 37802 cnresima 37803 hausgraph 43297 refsum2cnlem1 45133 itgsubsticclem 46072 stoweidlem62 46159 cnfsmf 46837 cnneiima 49016 sepfsepc 49027 |
| Copyright terms: Public domain | W3C validator |