| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnf | Structured version Visualization version GIF version | ||
| Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscnp2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| iscnp2.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnf | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnp2.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscnp2.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23159 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 Topctop 22814 Cn ccn 23145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22815 df-topon 22832 df-cn 23148 |
| This theorem is referenced by: cnco 23187 cnclima 23189 cnntri 23192 cnclsi 23193 cnss1 23197 cnss2 23198 cncnpi 23199 cncnp2 23202 cnrest 23206 cnrest2 23207 cnt0 23267 cnt1 23271 cnhaus 23275 dnsconst 23299 cncmp 23313 rncmp 23317 imacmp 23318 cnconn 23343 connima 23346 conncn 23347 2ndcomap 23379 kgencn2 23478 kgencn3 23479 txcnmpt 23545 uptx 23546 txcn 23547 hauseqlcld 23567 xkohaus 23574 xkoptsub 23575 xkopjcn 23577 xkoco1cn 23578 xkoco2cn 23579 xkococnlem 23580 cnmpt11f 23585 cnmpt21f 23593 hmeocnv 23683 hmeores 23692 txhmeo 23724 cnextfres 23990 bndth 24891 evth 24892 evth2 24893 htpyco2 24912 phtpyco2 24923 reparphti 24930 reparphtiOLD 24931 copco 24952 pcopt 24956 pcopt2 24957 pcoass 24958 pcorevlem 24960 pcorev2 24962 hauseqcn 33882 pl1cn 33939 rrhf 33982 esumcocn 34064 cnmbfm 34248 cnpconn 35211 ptpconn 35214 sconnpi1 35220 txsconnlem 35221 cvxsconn 35224 cvmseu 35257 cvmopnlem 35259 cvmfolem 35260 cvmliftmolem1 35262 cvmliftmolem2 35263 cvmliftlem3 35268 cvmliftlem6 35271 cvmliftlem7 35272 cvmliftlem8 35273 cvmliftlem9 35274 cvmliftlem10 35275 cvmliftlem11 35276 cvmliftlem13 35277 cvmliftlem15 35279 cvmlift2lem3 35286 cvmlift2lem5 35288 cvmlift2lem7 35290 cvmlift2lem9 35292 cvmlift2lem10 35293 cvmliftphtlem 35298 cvmlift3lem1 35300 cvmlift3lem2 35301 cvmlift3lem4 35303 cvmlift3lem5 35304 cvmlift3lem6 35305 cvmlift3lem7 35306 cvmlift3lem8 35307 cvmlift3lem9 35308 poimirlem31 37639 poimir 37641 broucube 37642 cnres2 37751 cnresima 37752 hausgraph 43188 refsum2cnlem1 45025 itgsubsticclem 45967 stoweidlem62 46054 cnfsmf 46732 cnneiima 48899 sepfsepc 48910 |
| Copyright terms: Public domain | W3C validator |