MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphsym Structured version   Visualization version   GIF version

Theorem hmphsym 23606
Description: "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
hmphsym (𝐽𝐾𝐾𝐽)

Proof of Theorem hmphsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23600 . . 3 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4346 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
31, 2bitri 275 . 2 (𝐽𝐾 ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 hmeocnv 23586 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐾Homeo𝐽))
5 hmphi 23601 . . . 4 (𝑓 ∈ (𝐾Homeo𝐽) → 𝐾𝐽)
64, 5syl 17 . . 3 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
76exlimiv 1932 . 2 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
83, 7sylbi 216 1 (𝐽𝐾𝐾𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2105  wne 2939  c0 4322   class class class wbr 5148  ccnv 5675  (class class class)co 7412  Homeochmeo 23577  chmph 23578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-1o 8472  df-map 8828  df-top 22716  df-topon 22733  df-cn 23051  df-hmeo 23579  df-hmph 23580
This theorem is referenced by:  hmpher  23608  hmphsymb  23610  haushmphlem  23611  t0kq  23642  kqhmph  23643  ist1-5lem  23644  reheibor  37173
  Copyright terms: Public domain W3C validator