MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphsym Structured version   Visualization version   GIF version

Theorem hmphsym 23692
Description: "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
hmphsym (𝐽𝐾𝐾𝐽)

Proof of Theorem hmphsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23686 . . 3 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4298 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
31, 2bitri 275 . 2 (𝐽𝐾 ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 hmeocnv 23672 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐾Homeo𝐽))
5 hmphi 23687 . . . 4 (𝑓 ∈ (𝐾Homeo𝐽) → 𝐾𝐽)
64, 5syl 17 . . 3 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
76exlimiv 1931 . 2 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
83, 7sylbi 217 1 (𝐽𝐾𝐾𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2111  wne 2928  c0 4278   class class class wbr 5086  ccnv 5610  (class class class)co 7341  Homeochmeo 23663  chmph 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-map 8747  df-top 22804  df-topon 22821  df-cn 23137  df-hmeo 23665  df-hmph 23666
This theorem is referenced by:  hmpher  23694  hmphsymb  23696  haushmphlem  23697  t0kq  23728  kqhmph  23729  ist1-5lem  23730  reheibor  37879
  Copyright terms: Public domain W3C validator