MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphsym Structured version   Visualization version   GIF version

Theorem hmphsym 23685
Description: "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
hmphsym (𝐽𝐾𝐾𝐽)

Proof of Theorem hmphsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hmph 23679 . . 3 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4306 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
31, 2bitri 275 . 2 (𝐽𝐾 ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 hmeocnv 23665 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐾Homeo𝐽))
5 hmphi 23680 . . . 4 (𝑓 ∈ (𝐾Homeo𝐽) → 𝐾𝐽)
64, 5syl 17 . . 3 (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
76exlimiv 1930 . 2 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐾𝐽)
83, 7sylbi 217 1 (𝐽𝐾𝐾𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  wne 2925  c0 4286   class class class wbr 5095  ccnv 5622  (class class class)co 7353  Homeochmeo 23656  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658  df-hmph 23659
This theorem is referenced by:  hmpher  23687  hmphsymb  23689  haushmphlem  23690  t0kq  23721  kqhmph  23722  ist1-5lem  23723  reheibor  37821
  Copyright terms: Public domain W3C validator