Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphsym | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
hmphsym | ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph 23033 | . . 3 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
2 | n0 4298 | . . 3 ⊢ ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾)) |
4 | hmeocnv 23019 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → ◡𝑓 ∈ (𝐾Homeo𝐽)) | |
5 | hmphi 23034 | . . . 4 ⊢ (◡𝑓 ∈ (𝐾Homeo𝐽) → 𝐾 ≃ 𝐽) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ≃ 𝐽) |
7 | 6 | exlimiv 1933 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → 𝐾 ≃ 𝐽) |
8 | 3, 7 | sylbi 216 | 1 ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∅c0 4274 class class class wbr 5097 ◡ccnv 5624 (class class class)co 7342 Homeochmeo 23010 ≃ chmph 23011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-1o 8372 df-map 8693 df-top 22149 df-topon 22166 df-cn 22484 df-hmeo 23012 df-hmph 23013 |
This theorem is referenced by: hmpher 23041 hmphsymb 23043 haushmphlem 23044 t0kq 23075 kqhmph 23076 ist1-5lem 23077 reheibor 36151 |
Copyright terms: Public domain | W3C validator |