![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeoopn | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeoopn | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeoima 23794 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
4 | hmeocn 23789 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | cnima 23294 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ 𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽) | |
6 | 5 | ex 412 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
9 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
10 | eqid 2740 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
11 | 9, 10 | hmeof1o 23793 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
12 | f1of1 6861 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
14 | f1imacnv 6878 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
15 | 13, 14 | sylan 579 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
16 | 15 | eleq1d 2829 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽)) |
17 | 8, 16 | sylibd 239 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → 𝐴 ∈ 𝐽)) |
18 | 3, 17 | impbid 212 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 –1-1→wf1 6570 –1-1-onto→wf1o 6572 (class class class)co 7448 Cn ccn 23253 Homeochmeo 23782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 df-hmeo 23784 |
This theorem is referenced by: hmphdis 23825 |
Copyright terms: Public domain | W3C validator |