MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoopn Structured version   Visualization version   GIF version

Theorem hmeoopn 23201
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeoopn ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 23200 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
21ex 413 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
32adantr 481 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
4 hmeocn 23195 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 cnima 22700 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ 𝐾) → (𝐹 “ (𝐹𝐴)) ∈ 𝐽)
65ex 413 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
74, 6syl 17 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
87adantr 481 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
9 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
10 eqid 2732 . . . . . . 7 𝐾 = 𝐾
119, 10hmeof1o 23199 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
12 f1of1 6820 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1311, 12syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
14 f1imacnv 6837 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1513, 14sylan 580 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1615eleq1d 2818 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ 𝐽𝐴𝐽))
178, 16sylibd 238 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾𝐴𝐽))
183, 17impbid 211 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3945   cuni 4902  ccnv 5669  cima 5673  1-1wf1 6530  1-1-ontowf1o 6532  (class class class)co 7394   Cn ccn 22659  Homeochmeo 23188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8807  df-top 22327  df-topon 22344  df-cn 22662  df-hmeo 23190
This theorem is referenced by:  hmphdis  23231
  Copyright terms: Public domain W3C validator