MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoopn Structured version   Visualization version   GIF version

Theorem hmeoopn 21898
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeoopn ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 21897 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
21ex 402 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
32adantr 473 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
4 hmeocn 21892 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 cnima 21398 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ 𝐾) → (𝐹 “ (𝐹𝐴)) ∈ 𝐽)
65ex 402 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
74, 6syl 17 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
87adantr 473 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
9 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
10 eqid 2799 . . . . . . 7 𝐾 = 𝐾
119, 10hmeof1o 21896 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
12 f1of1 6355 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1311, 12syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
14 f1imacnv 6372 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1513, 14sylan 576 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1615eleq1d 2863 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ 𝐽𝐴𝐽))
178, 16sylibd 231 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾𝐴𝐽))
183, 17impbid 204 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wss 3769   cuni 4628  ccnv 5311  cima 5315  1-1wf1 6098  1-1-ontowf1o 6100  (class class class)co 6878   Cn ccn 21357  Homeochmeo 21885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-top 21027  df-topon 21044  df-cn 21360  df-hmeo 21887
This theorem is referenced by:  hmphdis  21928
  Copyright terms: Public domain W3C validator