![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeoopn | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeoopn | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeoima 23489 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 → (𝐹 “ 𝐴) ∈ 𝐾)) |
4 | hmeocn 23484 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | cnima 22989 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ∈ 𝐾) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽) | |
6 | 5 | ex 413 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽)) |
9 | hmeoopn.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
10 | eqid 2732 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
11 | 9, 10 | hmeof1o 23488 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
12 | f1of1 6832 | . . . . . 6 ⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾 → 𝐹:𝑋–1-1→∪ 𝐾) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1→∪ 𝐾) |
14 | f1imacnv 6849 | . . . . 5 ⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
15 | 13, 14 | sylan 580 | . . . 4 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
16 | 15 | eleq1d 2818 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ (𝐹 “ 𝐴)) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽)) |
17 | 8, 16 | sylibd 238 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 “ 𝐴) ∈ 𝐾 → 𝐴 ∈ 𝐽)) |
18 | 3, 17 | impbid 211 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ∪ cuni 4908 ◡ccnv 5675 “ cima 5679 –1-1→wf1 6540 –1-1-onto→wf1o 6542 (class class class)co 7411 Cn ccn 22948 Homeochmeo 23477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-top 22616 df-topon 22633 df-cn 22951 df-hmeo 23479 |
This theorem is referenced by: hmphdis 23520 |
Copyright terms: Public domain | W3C validator |