MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoopn Structured version   Visualization version   GIF version

Theorem hmeoopn 22917
Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeoopn ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))

Proof of Theorem hmeoopn
StepHypRef Expression
1 hmeoima 22916 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
21ex 413 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
32adantr 481 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 → (𝐹𝐴) ∈ 𝐾))
4 hmeocn 22911 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 cnima 22416 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ∈ 𝐾) → (𝐹 “ (𝐹𝐴)) ∈ 𝐽)
65ex 413 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
74, 6syl 17 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
87adantr 481 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾 → (𝐹 “ (𝐹𝐴)) ∈ 𝐽))
9 hmeoopn.1 . . . . . . 7 𝑋 = 𝐽
10 eqid 2738 . . . . . . 7 𝐾 = 𝐾
119, 10hmeof1o 22915 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
12 f1of1 6715 . . . . . 6 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
1311, 12syl 17 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1 𝐾)
14 f1imacnv 6732 . . . . 5 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1513, 14sylan 580 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1615eleq1d 2823 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ (𝐹𝐴)) ∈ 𝐽𝐴𝐽))
178, 16sylibd 238 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝐾𝐴𝐽))
183, 17impbid 211 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887   cuni 4839  ccnv 5588  cima 5592  1-1wf1 6430  1-1-ontowf1o 6432  (class class class)co 7275   Cn ccn 22375  Homeochmeo 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378  df-hmeo 22906
This theorem is referenced by:  hmphdis  22947
  Copyright terms: Public domain W3C validator