| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeof1o | Structured version Visualization version GIF version | ||
| Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| hmeof1o.1 | ⊢ 𝑋 = ∪ 𝐽 |
| hmeof1o.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| hmeof1o | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn 23623 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | cntop1 23103 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 3 | hmeof1o.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | toptopon 22780 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 2, 4 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | cntop2 23104 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 7 | hmeof1o.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 8 | 7 | toptopon 22780 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | 6, 8 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
| 10 | 5, 9 | jca 511 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
| 11 | 1, 10 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
| 12 | hmeof1o2 23626 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) | |
| 13 | 12 | 3expia 1121 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌)) |
| 14 | 11, 13 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Topctop 22756 TopOnctopon 22773 Cn ccn 23087 Homeochmeo 23616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 df-hmeo 23618 |
| This theorem is referenced by: hmeoopn 23629 hmeocld 23630 hmeontr 23632 hmeoimaf1o 23633 hmeoqtop 23638 haushmphlem 23650 cmphmph 23651 connhmph 23652 reghmph 23656 nrmhmph 23657 hmphdis 23659 hmphen2 23662 cmphaushmeo 23663 txhmeo 23666 tpr2rico 33875 mndpluscn 33889 |
| Copyright terms: Public domain | W3C validator |