![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeof1o | Structured version Visualization version GIF version |
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
hmeof1o.1 | ⊢ 𝑋 = ∪ 𝐽 |
hmeof1o.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
hmeof1o | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 23017 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | cntop1 22497 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
3 | hmeof1o.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | toptopon 22172 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | sylib 217 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
6 | cntop2 22498 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
7 | hmeof1o.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
8 | 7 | toptopon 22172 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
9 | 6, 8 | sylib 217 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
10 | 5, 9 | jca 513 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
11 | 1, 10 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
12 | hmeof1o2 23020 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) | |
13 | 12 | 3expia 1121 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌)) |
14 | 11, 13 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∪ cuni 4857 –1-1-onto→wf1o 6483 ‘cfv 6484 (class class class)co 7342 Topctop 22148 TopOnctopon 22165 Cn ccn 22481 Homeochmeo 23010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-map 8693 df-top 22149 df-topon 22166 df-cn 22484 df-hmeo 23012 |
This theorem is referenced by: hmeoopn 23023 hmeocld 23024 hmeontr 23026 hmeoimaf1o 23027 hmeoqtop 23032 haushmphlem 23044 cmphmph 23045 connhmph 23046 reghmph 23050 nrmhmph 23051 hmphdis 23053 hmphen2 23056 cmphaushmeo 23057 txhmeo 23060 tpr2rico 32158 mndpluscn 32172 |
Copyright terms: Public domain | W3C validator |