MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeof1o Structured version   Visualization version   GIF version

Theorem hmeof1o 23489
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1 𝑋 = βˆͺ 𝐽
hmeof1o.2 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
hmeof1o (𝐹 ∈ (𝐽Homeo𝐾) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ)

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 23485 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 22965 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ Top)
3 hmeof1o.1 . . . . . 6 𝑋 = βˆͺ 𝐽
43toptopon 22640 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
52, 4sylib 217 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
6 cntop2 22966 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
7 hmeof1o.2 . . . . . 6 π‘Œ = βˆͺ 𝐾
87toptopon 22640 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
96, 8sylib 217 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
105, 9jca 511 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)))
111, 10syl 17 . 2 (𝐹 ∈ (𝐽Homeo𝐾) β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)))
12 hmeof1o2 23488 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ)
13123expia 1120 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽Homeo𝐾) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ))
1411, 13mpcom 38 1 (𝐹 ∈ (𝐽Homeo𝐾) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆͺ cuni 4908  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7412  Topctop 22616  TopOnctopon 22633   Cn ccn 22949  Homeochmeo 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-top 22617  df-topon 22634  df-cn 22952  df-hmeo 23480
This theorem is referenced by:  hmeoopn  23491  hmeocld  23492  hmeontr  23494  hmeoimaf1o  23495  hmeoqtop  23500  haushmphlem  23512  cmphmph  23513  connhmph  23514  reghmph  23518  nrmhmph  23519  hmphdis  23521  hmphen2  23524  cmphaushmeo  23525  txhmeo  23528  tpr2rico  33191  mndpluscn  33205
  Copyright terms: Public domain W3C validator