| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeof1o | Structured version Visualization version GIF version | ||
| Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| hmeof1o.1 | ⊢ 𝑋 = ∪ 𝐽 |
| hmeof1o.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| hmeof1o | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn 23675 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | cntop1 23155 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 3 | hmeof1o.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | toptopon 22832 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 2, 4 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | cntop2 23156 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 7 | hmeof1o.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 8 | 7 | toptopon 22832 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | 6, 8 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
| 10 | 5, 9 | jca 511 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
| 11 | 1, 10 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌))) |
| 12 | hmeof1o2 23678 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) | |
| 13 | 12 | 3expia 1121 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌)) |
| 14 | 11, 13 | mpcom 38 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Topctop 22808 TopOnctopon 22825 Cn ccn 23139 Homeochmeo 23668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 df-hmeo 23670 |
| This theorem is referenced by: hmeoopn 23681 hmeocld 23682 hmeontr 23684 hmeoimaf1o 23685 hmeoqtop 23690 haushmphlem 23702 cmphmph 23703 connhmph 23704 reghmph 23708 nrmhmph 23709 hmphdis 23711 hmphen2 23714 cmphaushmeo 23715 txhmeo 23718 tpr2rico 33925 mndpluscn 33939 |
| Copyright terms: Public domain | W3C validator |