![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeof1o | Structured version Visualization version GIF version |
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
hmeof1o.1 | β’ π = βͺ π½ |
hmeof1o.2 | β’ π = βͺ πΎ |
Ref | Expression |
---|---|
hmeof1o | β’ (πΉ β (π½HomeoπΎ) β πΉ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 23485 | . . 3 β’ (πΉ β (π½HomeoπΎ) β πΉ β (π½ Cn πΎ)) | |
2 | cntop1 22965 | . . . . 5 β’ (πΉ β (π½ Cn πΎ) β π½ β Top) | |
3 | hmeof1o.1 | . . . . . 6 β’ π = βͺ π½ | |
4 | 3 | toptopon 22640 | . . . . 5 β’ (π½ β Top β π½ β (TopOnβπ)) |
5 | 2, 4 | sylib 217 | . . . 4 β’ (πΉ β (π½ Cn πΎ) β π½ β (TopOnβπ)) |
6 | cntop2 22966 | . . . . 5 β’ (πΉ β (π½ Cn πΎ) β πΎ β Top) | |
7 | hmeof1o.2 | . . . . . 6 β’ π = βͺ πΎ | |
8 | 7 | toptopon 22640 | . . . . 5 β’ (πΎ β Top β πΎ β (TopOnβπ)) |
9 | 6, 8 | sylib 217 | . . . 4 β’ (πΉ β (π½ Cn πΎ) β πΎ β (TopOnβπ)) |
10 | 5, 9 | jca 511 | . . 3 β’ (πΉ β (π½ Cn πΎ) β (π½ β (TopOnβπ) β§ πΎ β (TopOnβπ))) |
11 | 1, 10 | syl 17 | . 2 β’ (πΉ β (π½HomeoπΎ) β (π½ β (TopOnβπ) β§ πΎ β (TopOnβπ))) |
12 | hmeof1o2 23488 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβ1-1-ontoβπ) | |
13 | 12 | 3expia 1120 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½HomeoπΎ) β πΉ:πβ1-1-ontoβπ)) |
14 | 11, 13 | mpcom 38 | 1 β’ (πΉ β (π½HomeoπΎ) β πΉ:πβ1-1-ontoβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βͺ cuni 4908 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 Topctop 22616 TopOnctopon 22633 Cn ccn 22949 Homeochmeo 23478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-top 22617 df-topon 22634 df-cn 22952 df-hmeo 23480 |
This theorem is referenced by: hmeoopn 23491 hmeocld 23492 hmeontr 23494 hmeoimaf1o 23495 hmeoqtop 23500 haushmphlem 23512 cmphmph 23513 connhmph 23514 reghmph 23518 nrmhmph 23519 hmphdis 23521 hmphen2 23524 cmphaushmeo 23525 txhmeo 23528 tpr2rico 33191 mndpluscn 33205 |
Copyright terms: Public domain | W3C validator |