| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version | ||
| Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23153 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simprd 495 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 6 | imaeq2 6004 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 7 | 6 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 8 | 7 | rspccva 3571 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| 9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 (class class class)co 7346 Topctop 22808 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: cnco 23181 cnclima 23183 cnntri 23186 cnss1 23191 cnss2 23192 cncnpi 23193 cnrest 23200 cnt0 23261 cnhaus 23269 cncmp 23307 cnconn 23337 2ndcomap 23373 kgencn3 23473 txcnmpt 23539 txdis1cn 23550 pthaus 23553 ptrescn 23554 txkgen 23567 xkoco2cn 23573 xkococnlem 23574 txconn 23604 imasnopn 23605 qtopkgen 23625 qtopss 23630 isr0 23652 kqreglem1 23656 kqreglem2 23657 kqnrmlem1 23658 kqnrmlem2 23659 hmeoima 23680 hmeoopn 23681 hmeoimaf1o 23685 reghmph 23708 nrmhmph 23709 tmdgsum2 24011 symgtgp 24021 ghmcnp 24030 tgpt0 24034 qustgpopn 24035 qustgplem 24036 nmhmcn 25047 mbfimaopnlem 25583 cncombf 25586 cnmbf 25587 dvloglem 26584 efopnlem2 26593 efopn 26594 atansopn 26869 cnmbfm 34276 cvmsss2 35318 cvmliftmolem2 35326 cvmliftlem15 35342 cvmlift2lem9a 35347 cvmlift2lem9 35355 cvmlift2lem10 35356 cvmlift3lem6 35368 cvmlift3lem8 35370 dvtanlem 37719 resuppsinopn 42466 rfcnpre1 45126 rfcnpre2 45138 icccncfext 45995 |
| Copyright terms: Public domain | W3C validator |