| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version | ||
| Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23158 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simprd 495 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 6 | imaeq2 6016 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 8 | 7 | rspccva 3584 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| 9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 Topctop 22813 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 |
| This theorem is referenced by: cnco 23186 cnclima 23188 cnntri 23191 cnss1 23196 cnss2 23197 cncnpi 23198 cnrest 23205 cnt0 23266 cnhaus 23274 cncmp 23312 cnconn 23342 2ndcomap 23378 kgencn3 23478 txcnmpt 23544 txdis1cn 23555 pthaus 23558 ptrescn 23559 txkgen 23572 xkoco2cn 23578 xkococnlem 23579 txconn 23609 imasnopn 23610 qtopkgen 23630 qtopss 23635 isr0 23657 kqreglem1 23661 kqreglem2 23662 kqnrmlem1 23663 kqnrmlem2 23664 hmeoima 23685 hmeoopn 23686 hmeoimaf1o 23690 reghmph 23713 nrmhmph 23714 tmdgsum2 24016 symgtgp 24026 ghmcnp 24035 tgpt0 24039 qustgpopn 24040 qustgplem 24041 nmhmcn 25053 mbfimaopnlem 25589 cncombf 25592 cnmbf 25593 dvloglem 26590 efopnlem2 26599 efopn 26600 atansopn 26875 cnmbfm 34247 cvmsss2 35254 cvmliftmolem2 35262 cvmliftlem15 35278 cvmlift2lem9a 35283 cvmlift2lem9 35291 cvmlift2lem10 35292 cvmlift3lem6 35304 cvmlift3lem8 35306 dvtanlem 37656 resuppsinopn 42344 rfcnpre1 45006 rfcnpre2 45018 icccncfext 45878 |
| Copyright terms: Public domain | W3C validator |