![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version |
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22742 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 498 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simprd 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
6 | imaeq2 6056 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
7 | 6 | eleq1d 2819 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
8 | 7 | rspccva 3612 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
9 | 5, 8 | sylan 581 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∪ cuni 4909 ◡ccnv 5676 “ cima 5680 ⟶wf 6540 (class class class)co 7409 Topctop 22395 Cn ccn 22728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-top 22396 df-topon 22413 df-cn 22731 |
This theorem is referenced by: cnco 22770 cnclima 22772 cnntri 22775 cnss1 22780 cnss2 22781 cncnpi 22782 cnrest 22789 cnt0 22850 cnhaus 22858 cncmp 22896 cnconn 22926 2ndcomap 22962 kgencn3 23062 txcnmpt 23128 txdis1cn 23139 pthaus 23142 ptrescn 23143 txkgen 23156 xkoco2cn 23162 xkococnlem 23163 txconn 23193 imasnopn 23194 qtopkgen 23214 qtopss 23219 isr0 23241 kqreglem1 23245 kqreglem2 23246 kqnrmlem1 23247 kqnrmlem2 23248 hmeoima 23269 hmeoopn 23270 hmeoimaf1o 23274 reghmph 23297 nrmhmph 23298 tmdgsum2 23600 symgtgp 23610 ghmcnp 23619 tgpt0 23623 qustgpopn 23624 qustgplem 23625 nmhmcn 24636 mbfimaopnlem 25172 cncombf 25175 cnmbf 25176 dvloglem 26156 efopnlem2 26165 efopn 26166 atansopn 26437 cnmbfm 33262 cvmsss2 34265 cvmliftmolem2 34273 cvmliftlem15 34289 cvmlift2lem9a 34294 cvmlift2lem9 34302 cvmlift2lem10 34303 cvmlift3lem6 34315 cvmlift3lem8 34317 dvtanlem 36537 rfcnpre1 43703 rfcnpre2 43715 icccncfext 44603 |
Copyright terms: Public domain | W3C validator |