MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnima Structured version   Visualization version   GIF version

Theorem cnima 23273
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
Assertion
Ref Expression
cnima ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝐾) → (𝐹𝐴) ∈ 𝐽)

Proof of Theorem cnima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 𝐽 = 𝐽
2 eqid 2737 . . . . 5 𝐾 = 𝐾
31, 2iscn2 23246 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simprbi 496 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
54simprd 495 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)
6 imaeq2 6074 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76eleq1d 2826 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝐴) ∈ 𝐽))
87rspccva 3621 . 2 ((∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽𝐴𝐾) → (𝐹𝐴) ∈ 𝐽)
95, 8sylan 580 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝐾) → (𝐹𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061   cuni 4907  ccnv 5684  cima 5688  wf 6557  (class class class)co 7431  Topctop 22899   Cn ccn 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-top 22900  df-topon 22917  df-cn 23235
This theorem is referenced by:  cnco  23274  cnclima  23276  cnntri  23279  cnss1  23284  cnss2  23285  cncnpi  23286  cnrest  23293  cnt0  23354  cnhaus  23362  cncmp  23400  cnconn  23430  2ndcomap  23466  kgencn3  23566  txcnmpt  23632  txdis1cn  23643  pthaus  23646  ptrescn  23647  txkgen  23660  xkoco2cn  23666  xkococnlem  23667  txconn  23697  imasnopn  23698  qtopkgen  23718  qtopss  23723  isr0  23745  kqreglem1  23749  kqreglem2  23750  kqnrmlem1  23751  kqnrmlem2  23752  hmeoima  23773  hmeoopn  23774  hmeoimaf1o  23778  reghmph  23801  nrmhmph  23802  tmdgsum2  24104  symgtgp  24114  ghmcnp  24123  tgpt0  24127  qustgpopn  24128  qustgplem  24129  nmhmcn  25153  mbfimaopnlem  25690  cncombf  25693  cnmbf  25694  dvloglem  26690  efopnlem2  26699  efopn  26700  atansopn  26975  cnmbfm  34265  cvmsss2  35279  cvmliftmolem2  35287  cvmliftlem15  35303  cvmlift2lem9a  35308  cvmlift2lem9  35316  cvmlift2lem10  35317  cvmlift3lem6  35329  cvmlift3lem8  35331  dvtanlem  37676  resuppsinopn  42393  rfcnpre1  45024  rfcnpre2  45036  icccncfext  45902
  Copyright terms: Public domain W3C validator