Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version |
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22387 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simprd 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
6 | imaeq2 5964 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
7 | 6 | eleq1d 2825 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
8 | 7 | rspccva 3560 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∪ cuni 4845 ◡ccnv 5589 “ cima 5593 ⟶wf 6428 (class class class)co 7271 Topctop 22040 Cn ccn 22373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-map 8600 df-top 22041 df-topon 22058 df-cn 22376 |
This theorem is referenced by: cnco 22415 cnclima 22417 cnntri 22420 cnss1 22425 cnss2 22426 cncnpi 22427 cnrest 22434 cnt0 22495 cnhaus 22503 cncmp 22541 cnconn 22571 2ndcomap 22607 kgencn3 22707 txcnmpt 22773 txdis1cn 22784 pthaus 22787 ptrescn 22788 txkgen 22801 xkoco2cn 22807 xkococnlem 22808 txconn 22838 imasnopn 22839 qtopkgen 22859 qtopss 22864 isr0 22886 kqreglem1 22890 kqreglem2 22891 kqnrmlem1 22892 kqnrmlem2 22893 hmeoima 22914 hmeoopn 22915 hmeoimaf1o 22919 reghmph 22942 nrmhmph 22943 tmdgsum2 23245 symgtgp 23255 ghmcnp 23264 tgpt0 23268 qustgpopn 23269 qustgplem 23270 nmhmcn 24281 mbfimaopnlem 24817 cncombf 24820 cnmbf 24821 dvloglem 25801 efopnlem2 25810 efopn 25811 atansopn 26080 cnmbfm 32226 cvmsss2 33232 cvmliftmolem2 33240 cvmliftlem15 33256 cvmlift2lem9a 33261 cvmlift2lem9 33269 cvmlift2lem10 33270 cvmlift3lem6 33282 cvmlift3lem8 33284 dvtanlem 35822 rfcnpre1 42532 rfcnpre2 42544 icccncfext 43399 |
Copyright terms: Public domain | W3C validator |