Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version |
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 22389 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simprd 496 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
6 | imaeq2 5965 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
7 | 6 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
8 | 7 | rspccva 3560 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cuni 4839 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 (class class class)co 7275 Topctop 22042 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-top 22043 df-topon 22060 df-cn 22378 |
This theorem is referenced by: cnco 22417 cnclima 22419 cnntri 22422 cnss1 22427 cnss2 22428 cncnpi 22429 cnrest 22436 cnt0 22497 cnhaus 22505 cncmp 22543 cnconn 22573 2ndcomap 22609 kgencn3 22709 txcnmpt 22775 txdis1cn 22786 pthaus 22789 ptrescn 22790 txkgen 22803 xkoco2cn 22809 xkococnlem 22810 txconn 22840 imasnopn 22841 qtopkgen 22861 qtopss 22866 isr0 22888 kqreglem1 22892 kqreglem2 22893 kqnrmlem1 22894 kqnrmlem2 22895 hmeoima 22916 hmeoopn 22917 hmeoimaf1o 22921 reghmph 22944 nrmhmph 22945 tmdgsum2 23247 symgtgp 23257 ghmcnp 23266 tgpt0 23270 qustgpopn 23271 qustgplem 23272 nmhmcn 24283 mbfimaopnlem 24819 cncombf 24822 cnmbf 24823 dvloglem 25803 efopnlem2 25812 efopn 25813 atansopn 26082 cnmbfm 32230 cvmsss2 33236 cvmliftmolem2 33244 cvmliftlem15 33260 cvmlift2lem9a 33265 cvmlift2lem9 33273 cvmlift2lem10 33274 cvmlift3lem6 33286 cvmlift3lem8 33288 dvtanlem 35826 rfcnpre1 42562 rfcnpre2 42574 icccncfext 43428 |
Copyright terms: Public domain | W3C validator |