| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version | ||
| Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23161 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simprd 495 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 6 | imaeq2 6040 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 7 | 6 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 8 | 7 | rspccva 3598 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| 9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∪ cuni 4880 ◡ccnv 5650 “ cima 5654 ⟶wf 6523 (class class class)co 7399 Topctop 22816 Cn ccn 23147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-map 8836 df-top 22817 df-topon 22834 df-cn 23150 |
| This theorem is referenced by: cnco 23189 cnclima 23191 cnntri 23194 cnss1 23199 cnss2 23200 cncnpi 23201 cnrest 23208 cnt0 23269 cnhaus 23277 cncmp 23315 cnconn 23345 2ndcomap 23381 kgencn3 23481 txcnmpt 23547 txdis1cn 23558 pthaus 23561 ptrescn 23562 txkgen 23575 xkoco2cn 23581 xkococnlem 23582 txconn 23612 imasnopn 23613 qtopkgen 23633 qtopss 23638 isr0 23660 kqreglem1 23664 kqreglem2 23665 kqnrmlem1 23666 kqnrmlem2 23667 hmeoima 23688 hmeoopn 23689 hmeoimaf1o 23693 reghmph 23716 nrmhmph 23717 tmdgsum2 24019 symgtgp 24029 ghmcnp 24038 tgpt0 24042 qustgpopn 24043 qustgplem 24044 nmhmcn 25056 mbfimaopnlem 25593 cncombf 25596 cnmbf 25597 dvloglem 26593 efopnlem2 26602 efopn 26603 atansopn 26878 cnmbfm 34203 cvmsss2 35217 cvmliftmolem2 35225 cvmliftlem15 35241 cvmlift2lem9a 35246 cvmlift2lem9 35254 cvmlift2lem10 35255 cvmlift3lem6 35267 cvmlift3lem8 35269 dvtanlem 37614 resuppsinopn 42331 rfcnpre1 44970 rfcnpre2 44982 icccncfext 45846 |
| Copyright terms: Public domain | W3C validator |