| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version | ||
| Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23123 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 5 | 4 | simprd 495 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 6 | imaeq2 6007 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
| 7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 8 | 7 | rspccva 3576 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| 9 | 5, 8 | sylan 580 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 (class class class)co 7349 Topctop 22778 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: cnco 23151 cnclima 23153 cnntri 23156 cnss1 23161 cnss2 23162 cncnpi 23163 cnrest 23170 cnt0 23231 cnhaus 23239 cncmp 23277 cnconn 23307 2ndcomap 23343 kgencn3 23443 txcnmpt 23509 txdis1cn 23520 pthaus 23523 ptrescn 23524 txkgen 23537 xkoco2cn 23543 xkococnlem 23544 txconn 23574 imasnopn 23575 qtopkgen 23595 qtopss 23600 isr0 23622 kqreglem1 23626 kqreglem2 23627 kqnrmlem1 23628 kqnrmlem2 23629 hmeoima 23650 hmeoopn 23651 hmeoimaf1o 23655 reghmph 23678 nrmhmph 23679 tmdgsum2 23981 symgtgp 23991 ghmcnp 24000 tgpt0 24004 qustgpopn 24005 qustgplem 24006 nmhmcn 25018 mbfimaopnlem 25554 cncombf 25557 cnmbf 25558 dvloglem 26555 efopnlem2 26564 efopn 26565 atansopn 26840 cnmbfm 34231 cvmsss2 35251 cvmliftmolem2 35259 cvmliftlem15 35275 cvmlift2lem9a 35280 cvmlift2lem9 35288 cvmlift2lem10 35289 cvmlift3lem6 35301 cvmlift3lem8 35303 dvtanlem 37653 resuppsinopn 42340 rfcnpre1 45001 rfcnpre2 45013 icccncfext 45872 |
| Copyright terms: Public domain | W3C validator |