MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homacd Structured version   Visualization version   GIF version

Theorem homacd 17988
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homacd (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)

Proof of Theorem homacd
StepHypRef Expression
1 df-coda 17972 . . . 4 coda = (2nd ∘ 1st )
21fveq1i 6890 . . 3 (coda𝐹) = ((2nd ∘ 1st )‘𝐹)
3 fo1st 7992 . . . . 5 1st :V–onto→V
4 fof 6803 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . 4 1st :V⟶V
6 elex 3493 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V)
7 fvco3 6988 . . . 4 ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st𝐹)))
85, 6, 7sylancr 588 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st𝐹)))
92, 8eqtrid 2785 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = (2nd ‘(1st𝐹)))
10 homahom.h . . . . . 6 𝐻 = (Homa𝐶)
1110homarel 17983 . . . . 5 Rel (𝑋𝐻𝑌)
12 1st2ndbr 8025 . . . . 5 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1311, 12mpan 689 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1410homa1 17984 . . . 4 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1513, 14syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1615fveq2d 6893 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st𝐹)) = (2nd ‘⟨𝑋, 𝑌⟩))
17 eqid 2733 . . . 4 (Base‘𝐶) = (Base‘𝐶)
1810, 17homarcl2 17982 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
19 op2ndg 7985 . . 3 ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2018, 19syl 17 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
219, 16, 203eqtrd 2777 1 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cop 4634   class class class wbr 5148  ccom 5680  Rel wrel 5681  wf 6537  ontowfo 6539  cfv 6541  (class class class)co 7406  1st c1st 7970  2nd c2nd 7971  Basecbs 17141  codaccoda 17968  Homachoma 17970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-1st 7972  df-2nd 7973  df-coda 17972  df-homa 17973
This theorem is referenced by:  arwhoma  17992  idacd  18009  homdmcoa  18014  coaval  18015
  Copyright terms: Public domain W3C validator