![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homacd | Structured version Visualization version GIF version |
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homacd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coda 18092 | . . . 4 ⊢ coda = (2nd ∘ 1st ) | |
2 | 1 | fveq1i 6921 | . . 3 ⊢ (coda‘𝐹) = ((2nd ∘ 1st )‘𝐹) |
3 | fo1st 8050 | . . . . 5 ⊢ 1st :V–onto→V | |
4 | fof 6834 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
6 | elex 3509 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
7 | fvco3 7021 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) |
9 | 2, 8 | eqtrid 2792 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = (2nd ‘(1st ‘𝐹))) |
10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
11 | 10 | homarel 18103 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
12 | 1st2ndbr 8083 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
13 | 11, 12 | mpan 689 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
14 | 10 | homa1 18104 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
16 | 15 | fveq2d 6924 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st ‘𝐹)) = (2nd ‘〈𝑋, 𝑌〉)) |
17 | eqid 2740 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
18 | 10, 17 | homarcl2 18102 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
19 | op2ndg 8043 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
21 | 9, 16, 20 | 3eqtrd 2784 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 ∘ ccom 5704 Rel wrel 5705 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 Basecbs 17258 codaccoda 18088 Homachoma 18090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-coda 18092 df-homa 18093 |
This theorem is referenced by: arwhoma 18112 idacd 18129 homdmcoa 18134 coaval 18135 |
Copyright terms: Public domain | W3C validator |