MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homacd Structured version   Visualization version   GIF version

Theorem homacd 18001
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homacd (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)

Proof of Theorem homacd
StepHypRef Expression
1 df-coda 17985 . . . 4 coda = (2nd ∘ 1st )
21fveq1i 6892 . . 3 (coda𝐹) = ((2nd ∘ 1st )‘𝐹)
3 fo1st 7999 . . . . 5 1st :V–onto→V
4 fof 6805 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . 4 1st :V⟶V
6 elex 3492 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V)
7 fvco3 6990 . . . 4 ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st𝐹)))
85, 6, 7sylancr 586 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st𝐹)))
92, 8eqtrid 2783 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = (2nd ‘(1st𝐹)))
10 homahom.h . . . . . 6 𝐻 = (Homa𝐶)
1110homarel 17996 . . . . 5 Rel (𝑋𝐻𝑌)
12 1st2ndbr 8032 . . . . 5 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1311, 12mpan 687 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1410homa1 17997 . . . 4 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1513, 14syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1615fveq2d 6895 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st𝐹)) = (2nd ‘⟨𝑋, 𝑌⟩))
17 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
1810, 17homarcl2 17995 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
19 op2ndg 7992 . . 3 ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2018, 19syl 17 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
219, 16, 203eqtrd 2775 1 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634   class class class wbr 5148  ccom 5680  Rel wrel 5681  wf 6539  ontowfo 6541  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  Basecbs 17151  codaccoda 17981  Homachoma 17983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-1st 7979  df-2nd 7980  df-coda 17985  df-homa 17986
This theorem is referenced by:  arwhoma  18005  idacd  18022  homdmcoa  18027  coaval  18028
  Copyright terms: Public domain W3C validator