Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homacd | Structured version Visualization version GIF version |
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homacd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coda 17721 | . . . 4 ⊢ coda = (2nd ∘ 1st ) | |
2 | 1 | fveq1i 6769 | . . 3 ⊢ (coda‘𝐹) = ((2nd ∘ 1st )‘𝐹) |
3 | fo1st 7837 | . . . . 5 ⊢ 1st :V–onto→V | |
4 | fof 6684 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
6 | elex 3448 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
7 | fvco3 6861 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) |
9 | 2, 8 | eqtrid 2791 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = (2nd ‘(1st ‘𝐹))) |
10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
11 | 10 | homarel 17732 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
12 | 1st2ndbr 7869 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
13 | 11, 12 | mpan 686 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
14 | 10 | homa1 17733 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
16 | 15 | fveq2d 6772 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st ‘𝐹)) = (2nd ‘〈𝑋, 𝑌〉)) |
17 | eqid 2739 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
18 | 10, 17 | homarcl2 17731 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
19 | op2ndg 7830 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
21 | 9, 16, 20 | 3eqtrd 2783 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 class class class wbr 5078 ∘ ccom 5592 Rel wrel 5593 ⟶wf 6426 –onto→wfo 6428 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 Basecbs 16893 codaccoda 17717 Homachoma 17719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-1st 7817 df-2nd 7818 df-coda 17721 df-homa 17722 |
This theorem is referenced by: arwhoma 17741 idacd 17758 homdmcoa 17763 coaval 17764 |
Copyright terms: Public domain | W3C validator |