Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homacd | Structured version Visualization version GIF version |
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homacd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coda 17656 | . . . 4 ⊢ coda = (2nd ∘ 1st ) | |
2 | 1 | fveq1i 6757 | . . 3 ⊢ (coda‘𝐹) = ((2nd ∘ 1st )‘𝐹) |
3 | fo1st 7824 | . . . . 5 ⊢ 1st :V–onto→V | |
4 | fof 6672 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
6 | elex 3440 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
7 | fvco3 6849 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) | |
8 | 5, 6, 7 | sylancr 586 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) |
9 | 2, 8 | eqtrid 2790 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = (2nd ‘(1st ‘𝐹))) |
10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
11 | 10 | homarel 17667 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
12 | 1st2ndbr 7856 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
13 | 11, 12 | mpan 686 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
14 | 10 | homa1 17668 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
16 | 15 | fveq2d 6760 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st ‘𝐹)) = (2nd ‘〈𝑋, 𝑌〉)) |
17 | eqid 2738 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
18 | 10, 17 | homarcl2 17666 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
19 | op2ndg 7817 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
21 | 9, 16, 20 | 3eqtrd 2782 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 ∘ ccom 5584 Rel wrel 5585 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 codaccoda 17652 Homachoma 17654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 df-coda 17656 df-homa 17657 |
This theorem is referenced by: arwhoma 17676 idacd 17693 homdmcoa 17698 coaval 17699 |
Copyright terms: Public domain | W3C validator |