![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homacd | Structured version Visualization version GIF version |
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homacd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coda 18047 | . . . 4 ⊢ coda = (2nd ∘ 1st ) | |
2 | 1 | fveq1i 6902 | . . 3 ⊢ (coda‘𝐹) = ((2nd ∘ 1st )‘𝐹) |
3 | fo1st 8023 | . . . . 5 ⊢ 1st :V–onto→V | |
4 | fof 6815 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
6 | elex 3482 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
7 | fvco3 7001 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) | |
8 | 5, 6, 7 | sylancr 585 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((2nd ∘ 1st )‘𝐹) = (2nd ‘(1st ‘𝐹))) |
9 | 2, 8 | eqtrid 2778 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = (2nd ‘(1st ‘𝐹))) |
10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
11 | 10 | homarel 18058 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
12 | 1st2ndbr 8056 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
13 | 11, 12 | mpan 688 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
14 | 10 | homa1 18059 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
16 | 15 | fveq2d 6905 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘(1st ‘𝐹)) = (2nd ‘〈𝑋, 𝑌〉)) |
17 | eqid 2726 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
18 | 10, 17 | homarcl2 18057 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
19 | op2ndg 8016 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
21 | 9, 16, 20 | 3eqtrd 2770 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 〈cop 4639 class class class wbr 5153 ∘ ccom 5686 Rel wrel 5687 ⟶wf 6550 –onto→wfo 6552 ‘cfv 6554 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 Basecbs 17213 codaccoda 18043 Homachoma 18045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-1st 8003 df-2nd 8004 df-coda 18047 df-homa 18048 |
This theorem is referenced by: arwhoma 18067 idacd 18084 homdmcoa 18089 coaval 18090 |
Copyright terms: Public domain | W3C validator |