| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaf | Structured version Visualization version GIF version | ||
| Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| homaf | ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | homafval 17997 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥)))) |
| 6 | snssi 4774 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵)) |
| 8 | ssv 3973 | . . . 4 ⊢ ((Hom ‘𝐶)‘𝑥) ⊆ V | |
| 9 | xpss12 5655 | . . . 4 ⊢ (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 11 | vsnex 5391 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 12 | fvex 6873 | . . . . 5 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
| 13 | 11, 12 | xpex 7731 | . . . 4 ⊢ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V |
| 14 | 13 | elpw 4569 | . . 3 ⊢ (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 15 | 10, 14 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V)) |
| 16 | 5, 15 | fmpt3d 7090 | 1 ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 {csn 4591 × cxp 5638 ⟶wf 6509 ‘cfv 6513 Basecbs 17185 Hom chom 17237 Catccat 17631 Homachoma 17991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-homa 17994 |
| This theorem is referenced by: homarcl2 18003 homarel 18004 arwhoma 18013 |
| Copyright terms: Public domain | W3C validator |