MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaf Structured version   Visualization version   GIF version

Theorem homaf 18093
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
homaf (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))

Proof of Theorem homaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . . 3 𝐻 = (Homa𝐶)
2 homafval.b . . 3 𝐵 = (Base‘𝐶)
3 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 eqid 2737 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4homafval 18092 . 2 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥))))
6 snssi 4816 . . . . 5 (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵))
76adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵))
8 ssv 4023 . . . 4 ((Hom ‘𝐶)‘𝑥) ⊆ V
9 xpss12 5708 . . . 4 (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
107, 8, 9sylancl 586 . . 3 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
11 vsnex 5443 . . . . 5 {𝑥} ∈ V
12 fvex 6927 . . . . 5 ((Hom ‘𝐶)‘𝑥) ∈ V
1311, 12xpex 7779 . . . 4 ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V
1413elpw 4612 . . 3 (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
1510, 14sylibr 234 . 2 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V))
165, 15fmpt3d 7143 1 (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  wss 3966  𝒫 cpw 4608  {csn 4634   × cxp 5691  wf 6565  cfv 6569  Basecbs 17254  Hom chom 17318  Catccat 17718  Homachoma 18086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-homa 18089
This theorem is referenced by:  homarcl2  18098  homarel  18099  arwhoma  18108
  Copyright terms: Public domain W3C validator