| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaf | Structured version Visualization version GIF version | ||
| Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| homaf | ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | homafval 18045 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥)))) |
| 6 | snssi 4788 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵)) |
| 8 | ssv 3988 | . . . 4 ⊢ ((Hom ‘𝐶)‘𝑥) ⊆ V | |
| 9 | xpss12 5680 | . . . 4 ⊢ (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 11 | vsnex 5414 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 12 | fvex 6899 | . . . . 5 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
| 13 | 11, 12 | xpex 7755 | . . . 4 ⊢ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V |
| 14 | 13 | elpw 4584 | . . 3 ⊢ (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 15 | 10, 14 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V)) |
| 16 | 5, 15 | fmpt3d 7116 | 1 ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 × cxp 5663 ⟶wf 6537 ‘cfv 6541 Basecbs 17229 Hom chom 17284 Catccat 17678 Homachoma 18039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-homa 18042 |
| This theorem is referenced by: homarcl2 18051 homarel 18052 arwhoma 18061 |
| Copyright terms: Public domain | W3C validator |