Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homaf | Structured version Visualization version GIF version |
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
homaf | ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | eqid 2739 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | 1, 2, 3, 4 | homafval 17725 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥)))) |
6 | snssi 4746 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵)) | |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵)) |
8 | ssv 3949 | . . . 4 ⊢ ((Hom ‘𝐶)‘𝑥) ⊆ V | |
9 | xpss12 5603 | . . . 4 ⊢ (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) | |
10 | 7, 8, 9 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
11 | snex 5357 | . . . . 5 ⊢ {𝑥} ∈ V | |
12 | fvex 6781 | . . . . 5 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
13 | 11, 12 | xpex 7594 | . . . 4 ⊢ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V |
14 | 13 | elpw 4542 | . . 3 ⊢ (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
15 | 10, 14 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V)) |
16 | 5, 15 | fmpt3d 6984 | 1 ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 𝒫 cpw 4538 {csn 4566 × cxp 5586 ⟶wf 6426 ‘cfv 6430 Basecbs 16893 Hom chom 16954 Catccat 17354 Homachoma 17719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-homa 17722 |
This theorem is referenced by: homarcl2 17731 homarel 17732 arwhoma 17741 |
Copyright terms: Public domain | W3C validator |