| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaf | Structured version Visualization version GIF version | ||
| Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| homaf | ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | homafval 17944 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥)))) |
| 6 | snssi 4761 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵)) |
| 8 | ssv 3955 | . . . 4 ⊢ ((Hom ‘𝐶)‘𝑥) ⊆ V | |
| 9 | xpss12 5636 | . . . 4 ⊢ (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 11 | vsnex 5376 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 12 | fvex 6844 | . . . . 5 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
| 13 | 11, 12 | xpex 7695 | . . . 4 ⊢ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V |
| 14 | 13 | elpw 4555 | . . 3 ⊢ (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 15 | 10, 14 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V)) |
| 16 | 5, 15 | fmpt3d 7058 | 1 ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4551 {csn 4577 × cxp 5619 ⟶wf 6485 ‘cfv 6489 Basecbs 17127 Hom chom 17179 Catccat 17578 Homachoma 17938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-homa 17941 |
| This theorem is referenced by: homarcl2 17950 homarel 17951 arwhoma 17960 |
| Copyright terms: Public domain | W3C validator |