MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaf Structured version   Visualization version   GIF version

Theorem homaf 16991
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
homaf (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))

Proof of Theorem homaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snssi 4526 . . . . . 6 (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵))
21adantl 474 . . . . 5 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵))
3 ssv 3820 . . . . 5 ((Hom ‘𝐶)‘𝑥) ⊆ V
4 xpss12 5326 . . . . 5 (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
52, 3, 4sylancl 581 . . . 4 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
6 snex 5098 . . . . . 6 {𝑥} ∈ V
7 fvex 6423 . . . . . 6 ((Hom ‘𝐶)‘𝑥) ∈ V
86, 7xpex 7195 . . . . 5 ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V
98elpw 4354 . . . 4 (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
105, 9sylibr 226 . . 3 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V))
1110fmpttd 6610 . 2 (𝜑 → (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥))):(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
12 homarcl.h . . . 4 𝐻 = (Homa𝐶)
13 homafval.b . . . 4 𝐵 = (Base‘𝐶)
14 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
15 eqid 2798 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
1612, 13, 14, 15homafval 16990 . . 3 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥))))
1716feq1d 6240 . 2 (𝜑 → (𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V) ↔ (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥))):(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)))
1811, 17mpbird 249 1 (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3384  wss 3768  𝒫 cpw 4348  {csn 4367  cmpt 4921   × cxp 5309  wf 6096  cfv 6100  Basecbs 16181  Hom chom 16275  Catccat 16636  Homachoma 16984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-homa 16987
This theorem is referenced by:  homarcl2  16996  homarel  16997  arwhoma  17006
  Copyright terms: Public domain W3C validator