| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaf | Structured version Visualization version GIF version | ||
| Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| homaf | ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | homafval 17954 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥)))) |
| 6 | snssi 4762 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵)) |
| 8 | ssv 3962 | . . . 4 ⊢ ((Hom ‘𝐶)‘𝑥) ⊆ V | |
| 9 | xpss12 5638 | . . . 4 ⊢ (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 11 | vsnex 5376 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 12 | fvex 6839 | . . . . 5 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
| 13 | 11, 12 | xpex 7693 | . . . 4 ⊢ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V |
| 14 | 13 | elpw 4557 | . . 3 ⊢ (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V)) |
| 15 | 10, 14 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V)) |
| 16 | 5, 15 | fmpt3d 7054 | 1 ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 {csn 4579 × cxp 5621 ⟶wf 6482 ‘cfv 6486 Basecbs 17138 Hom chom 17190 Catccat 17588 Homachoma 17948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-homa 17951 |
| This theorem is referenced by: homarcl2 17960 homarel 17961 arwhoma 17970 |
| Copyright terms: Public domain | W3C validator |