MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaf Structured version   Visualization version   GIF version

Theorem homaf 17932
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
homaf (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))

Proof of Theorem homaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 homarcl.h . . 3 𝐻 = (Homa𝐶)
2 homafval.b . . 3 𝐵 = (Base‘𝐶)
3 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 eqid 2731 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4homafval 17931 . 2 (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × ((Hom ‘𝐶)‘𝑥))))
6 snssi 4755 . . . . 5 (𝑥 ∈ (𝐵 × 𝐵) → {𝑥} ⊆ (𝐵 × 𝐵))
76adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → {𝑥} ⊆ (𝐵 × 𝐵))
8 ssv 3954 . . . 4 ((Hom ‘𝐶)‘𝑥) ⊆ V
9 xpss12 5626 . . . 4 (({𝑥} ⊆ (𝐵 × 𝐵) ∧ ((Hom ‘𝐶)‘𝑥) ⊆ V) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
107, 8, 9sylancl 586 . . 3 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
11 vsnex 5367 . . . . 5 {𝑥} ∈ V
12 fvex 6830 . . . . 5 ((Hom ‘𝐶)‘𝑥) ∈ V
1311, 12xpex 7681 . . . 4 ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ V
1413elpw 4549 . . 3 (({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V) ↔ ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ⊆ ((𝐵 × 𝐵) × V))
1510, 14sylibr 234 . 2 ((𝜑𝑥 ∈ (𝐵 × 𝐵)) → ({𝑥} × ((Hom ‘𝐶)‘𝑥)) ∈ 𝒫 ((𝐵 × 𝐵) × V))
165, 15fmpt3d 7044 1 (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4545  {csn 4571   × cxp 5609  wf 6472  cfv 6476  Basecbs 17115  Hom chom 17167  Catccat 17565  Homachoma 17925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-homa 17928
This theorem is referenced by:  homarcl2  17937  homarel  17938  arwhoma  17947
  Copyright terms: Public domain W3C validator