MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycn Structured version   Visualization version   GIF version

Theorem htpycn 25024
Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpycn (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))

Proof of Theorem htpycn
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.3 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 ishtpy.4 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
41, 2, 3ishtpy 25023 . . 3 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ ( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)))))
5 simpl 482 . . 3 (( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))) → ∈ ((𝐽 ×t II) Cn 𝐾))
64, 5biimtrdi 253 . 2 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ∈ ((𝐽 ×t II) Cn 𝐾)))
76ssrdv 4014 1 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  IIcii 24920   Htpy chtpy 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256  df-htpy 25021
This theorem is referenced by:  htpycom  25027  htpyco1  25029  htpyco2  25030  htpycc  25031  phtpycn  25034
  Copyright terms: Public domain W3C validator