| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpycn | Structured version Visualization version GIF version | ||
| Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| htpycn | ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishtpy.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | ishtpy.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | ishtpy.4 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 4 | 1, 2, 3 | ishtpy 24896 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))))) |
| 5 | simpl 482 | . . 3 ⊢ ((ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾)) | |
| 6 | 4, 5 | biimtrdi 253 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾))) |
| 7 | 6 | ssrdv 3940 | 1 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 TopOnctopon 22823 Cn ccn 23137 ×t ctx 23473 IIcii 24793 Htpy chtpy 24891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-top 22807 df-topon 22824 df-cn 23140 df-htpy 24894 |
| This theorem is referenced by: htpycom 24900 htpyco1 24902 htpyco2 24903 htpycc 24904 phtpycn 24907 |
| Copyright terms: Public domain | W3C validator |