| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpycn | Structured version Visualization version GIF version | ||
| Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| htpycn | ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishtpy.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | ishtpy.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | ishtpy.4 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 4 | 1, 2, 3 | ishtpy 24878 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))))) |
| 5 | simpl 482 | . . 3 ⊢ ((ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾)) | |
| 6 | 4, 5 | biimtrdi 253 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾))) |
| 7 | 6 | ssrdv 3955 | 1 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 IIcii 24775 Htpy chtpy 24873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 df-htpy 24876 |
| This theorem is referenced by: htpycom 24882 htpyco1 24884 htpyco2 24885 htpycc 24886 phtpycn 24889 |
| Copyright terms: Public domain | W3C validator |