MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycn Structured version   Visualization version   GIF version

Theorem htpycn 24042
Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpycn (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))

Proof of Theorem htpycn
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.3 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 ishtpy.4 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
41, 2, 3ishtpy 24041 . . 3 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ ( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)))))
5 simpl 482 . . 3 (( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))) → ∈ ((𝐽 ×t II) Cn 𝐾))
64, 5syl6bi 252 . 2 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ∈ ((𝐽 ×t II) Cn 𝐾)))
76ssrdv 3923 1 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  IIcii 23944   Htpy chtpy 24036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286  df-htpy 24039
This theorem is referenced by:  htpycom  24045  htpyco1  24047  htpyco2  24048  htpycc  24049  phtpycn  24052
  Copyright terms: Public domain W3C validator