![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpycn | Structured version Visualization version GIF version |
Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
htpycn | ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpy.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | ishtpy.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | ishtpy.4 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
4 | 1, 2, 3 | ishtpy 23179 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))))) |
5 | simpl 476 | . . 3 ⊢ ((ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾)) | |
6 | 4, 5 | syl6bi 245 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾))) |
7 | 6 | ssrdv 3826 | 1 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ⊆ wss 3791 ‘cfv 6135 (class class class)co 6922 0cc0 10272 1c1 10273 TopOnctopon 21122 Cn ccn 21436 ×t ctx 21772 IIcii 23086 Htpy chtpy 23174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-map 8142 df-top 21106 df-topon 21123 df-cn 21439 df-htpy 23177 |
This theorem is referenced by: htpycom 23183 htpyco1 23185 htpyco2 23186 htpycc 23187 phtpycn 23190 |
Copyright terms: Public domain | W3C validator |