![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpycn | Structured version Visualization version GIF version |
Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
htpycn | ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpy.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | ishtpy.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | ishtpy.4 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
4 | 1, 2, 3 | ishtpy 24808 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))))) |
5 | simpl 482 | . . 3 ⊢ ((ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾)) | |
6 | 4, 5 | syl6bi 253 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ℎ ∈ ((𝐽 ×t II) Cn 𝐾))) |
7 | 6 | ssrdv 3980 | 1 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⊆ wss 3940 ‘cfv 6533 (class class class)co 7401 0cc0 11105 1c1 11106 TopOnctopon 22722 Cn ccn 23038 ×t ctx 23374 IIcii 24705 Htpy chtpy 24803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8817 df-top 22706 df-topon 22723 df-cn 23041 df-htpy 24806 |
This theorem is referenced by: htpycom 24812 htpyco1 24814 htpyco2 24815 htpycc 24816 phtpycn 24819 |
Copyright terms: Public domain | W3C validator |