MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycn Structured version   Visualization version   GIF version

Theorem htpycn 24900
Description: A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpycn (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))

Proof of Theorem htpycn
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.3 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 ishtpy.4 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
41, 2, 3ishtpy 24899 . . 3 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ ( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)))))
5 simpl 482 . . 3 (( ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))) → ∈ ((𝐽 ×t II) Cn 𝐾))
64, 5biimtrdi 253 . 2 (𝜑 → ( ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) → ∈ ((𝐽 ×t II) Cn 𝐾)))
76ssrdv 3936 1 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  TopOnctopon 22826   Cn ccn 23140   ×t ctx 23476  IIcii 24796   Htpy chtpy 24894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-top 22810  df-topon 22827  df-cn 23143  df-htpy 24897
This theorem is referenced by:  htpycom  24903  htpyco1  24905  htpyco2  24906  htpycc  24907  phtpycn  24910
  Copyright terms: Public domain W3C validator