MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycom Structured version   Visualization version   GIF version

Theorem htpycom 23581
Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycom.6 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
htpycom.7 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpycom (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem htpycom
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.4 . 2 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
3 ishtpy.3 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 htpycom.6 . . 3 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
5 iitopon 23484 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
71, 6cnmpt1st 22273 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
81, 6cnmpt2nd 22274 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
9 iirevcn 23535 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
109a1i 11 . . . . 5 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
11 oveq2 7143 . . . . 5 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
121, 6, 8, 6, 10, 11cnmpt21 22276 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((𝐽 ×t II) Cn II))
131, 3, 2htpycn 23578 . . . . 5 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
14 htpycom.7 . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1513, 14sseldd 3916 . . . 4 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
161, 6, 7, 12, 15cnmpt22f 22280 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) ∈ ((𝐽 ×t II) Cn 𝐾))
174, 16eqeltrid 2894 . 2 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
18 simpr 488 . . . 4 ((𝜑𝑡𝑋) → 𝑡𝑋)
19 0elunit 12847 . . . 4 0 ∈ (0[,]1)
20 oveq1 7142 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐻(1 − 𝑦)) = (𝑡𝐻(1 − 𝑦)))
21 oveq2 7143 . . . . . . 7 (𝑦 = 0 → (1 − 𝑦) = (1 − 0))
22 1m0e1 11746 . . . . . . 7 (1 − 0) = 1
2321, 22eqtrdi 2849 . . . . . 6 (𝑦 = 0 → (1 − 𝑦) = 1)
2423oveq2d 7151 . . . . 5 (𝑦 = 0 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻1))
25 ovex 7168 . . . . 5 (𝑡𝐻1) ∈ V
2620, 24, 4, 25ovmpo 7289 . . . 4 ((𝑡𝑋 ∧ 0 ∈ (0[,]1)) → (𝑡𝑀0) = (𝑡𝐻1))
2718, 19, 26sylancl 589 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝑡𝐻1))
281, 3, 2, 14htpyi 23579 . . . 4 ((𝜑𝑡𝑋) → ((𝑡𝐻0) = (𝐹𝑡) ∧ (𝑡𝐻1) = (𝐺𝑡)))
2928simprd 499 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻1) = (𝐺𝑡))
3027, 29eqtrd 2833 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝐺𝑡))
31 1elunit 12848 . . . 4 1 ∈ (0[,]1)
32 oveq2 7143 . . . . . . 7 (𝑦 = 1 → (1 − 𝑦) = (1 − 1))
33 1m1e0 11697 . . . . . . 7 (1 − 1) = 0
3432, 33eqtrdi 2849 . . . . . 6 (𝑦 = 1 → (1 − 𝑦) = 0)
3534oveq2d 7151 . . . . 5 (𝑦 = 1 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻0))
36 ovex 7168 . . . . 5 (𝑡𝐻0) ∈ V
3720, 35, 4, 36ovmpo 7289 . . . 4 ((𝑡𝑋 ∧ 1 ∈ (0[,]1)) → (𝑡𝑀1) = (𝑡𝐻0))
3818, 31, 37sylancl 589 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝑡𝐻0))
3928simpld 498 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻0) = (𝐹𝑡))
4038, 39eqtrd 2833 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝐹𝑡))
411, 2, 3, 17, 30, 40ishtpyd 23580 1 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527  cmin 10859  [,]cicc 12729  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165  IIcii 23480   Htpy chtpy 23572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575
This theorem is referenced by:  phtpycom  23593
  Copyright terms: Public domain W3C validator