MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycom Structured version   Visualization version   GIF version

Theorem htpycom 23507
Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycom.6 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
htpycom.7 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpycom (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem htpycom
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishtpy.1 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 ishtpy.4 . 2 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
3 ishtpy.3 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 htpycom.6 . . 3 𝑀 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
5 iitopon 23414 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
71, 6cnmpt1st 22204 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
81, 6cnmpt2nd 22205 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
9 iirevcn 23461 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
109a1i 11 . . . . 5 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
11 oveq2 7153 . . . . 5 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
121, 6, 8, 6, 10, 11cnmpt21 22207 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((𝐽 ×t II) Cn II))
131, 3, 2htpycn 23504 . . . . 5 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
14 htpycom.7 . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1513, 14sseldd 3965 . . . 4 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
161, 6, 7, 12, 15cnmpt22f 22211 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) ∈ ((𝐽 ×t II) Cn 𝐾))
174, 16eqeltrid 2914 . 2 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
18 simpr 485 . . . 4 ((𝜑𝑡𝑋) → 𝑡𝑋)
19 0elunit 12843 . . . 4 0 ∈ (0[,]1)
20 oveq1 7152 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐻(1 − 𝑦)) = (𝑡𝐻(1 − 𝑦)))
21 oveq2 7153 . . . . . . 7 (𝑦 = 0 → (1 − 𝑦) = (1 − 0))
22 1m0e1 11746 . . . . . . 7 (1 − 0) = 1
2321, 22syl6eq 2869 . . . . . 6 (𝑦 = 0 → (1 − 𝑦) = 1)
2423oveq2d 7161 . . . . 5 (𝑦 = 0 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻1))
25 ovex 7178 . . . . 5 (𝑡𝐻1) ∈ V
2620, 24, 4, 25ovmpo 7299 . . . 4 ((𝑡𝑋 ∧ 0 ∈ (0[,]1)) → (𝑡𝑀0) = (𝑡𝐻1))
2718, 19, 26sylancl 586 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝑡𝐻1))
281, 3, 2, 14htpyi 23505 . . . 4 ((𝜑𝑡𝑋) → ((𝑡𝐻0) = (𝐹𝑡) ∧ (𝑡𝐻1) = (𝐺𝑡)))
2928simprd 496 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻1) = (𝐺𝑡))
3027, 29eqtrd 2853 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀0) = (𝐺𝑡))
31 1elunit 12844 . . . 4 1 ∈ (0[,]1)
32 oveq2 7153 . . . . . . 7 (𝑦 = 1 → (1 − 𝑦) = (1 − 1))
33 1m1e0 11697 . . . . . . 7 (1 − 1) = 0
3432, 33syl6eq 2869 . . . . . 6 (𝑦 = 1 → (1 − 𝑦) = 0)
3534oveq2d 7161 . . . . 5 (𝑦 = 1 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻0))
36 ovex 7178 . . . . 5 (𝑡𝐻0) ∈ V
3720, 35, 4, 36ovmpo 7299 . . . 4 ((𝑡𝑋 ∧ 1 ∈ (0[,]1)) → (𝑡𝑀1) = (𝑡𝐻0))
3818, 31, 37sylancl 586 . . 3 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝑡𝐻0))
3928simpld 495 . . 3 ((𝜑𝑡𝑋) → (𝑡𝐻0) = (𝐹𝑡))
4038, 39eqtrd 2853 . 2 ((𝜑𝑡𝑋) → (𝑡𝑀1) = (𝐹𝑡))
411, 2, 3, 17, 30, 40ishtpyd 23506 1 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cmpt 5137  cfv 6348  (class class class)co 7145  cmpo 7147  0cc0 10525  1c1 10526  cmin 10858  [,]cicc 12729  TopOnctopon 21446   Cn ccn 21760   ×t ctx 22096  IIcii 23410   Htpy chtpy 23498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-ii 23412  df-htpy 23501
This theorem is referenced by:  phtpycom  23519
  Copyright terms: Public domain W3C validator