Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htpycom | Structured version Visualization version GIF version |
Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
htpycom.6 | ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) |
htpycom.7 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Ref | Expression |
---|---|
htpycom | ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpy.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | ishtpy.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
3 | ishtpy.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
4 | htpycom.6 | . . 3 ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) | |
5 | iitopon 23948 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
7 | 1, 6 | cnmpt1st 22727 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
8 | 1, 6 | cnmpt2nd 22728 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
9 | iirevcn 23999 | . . . . . 6 ⊢ (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)) |
11 | oveq2 7263 | . . . . 5 ⊢ (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦)) | |
12 | 1, 6, 8, 6, 10, 11 | cnmpt21 22730 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((𝐽 ×t II) Cn II)) |
13 | 1, 3, 2 | htpycn 24042 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
14 | htpycom.7 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | |
15 | 13, 14 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) |
16 | 1, 6, 7, 12, 15 | cnmpt22f 22734 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) ∈ ((𝐽 ×t II) Cn 𝐾)) |
17 | 4, 16 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((𝐽 ×t II) Cn 𝐾)) |
18 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → 𝑡 ∈ 𝑋) | |
19 | 0elunit 13130 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
20 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑥𝐻(1 − 𝑦)) = (𝑡𝐻(1 − 𝑦))) | |
21 | oveq2 7263 | . . . . . . 7 ⊢ (𝑦 = 0 → (1 − 𝑦) = (1 − 0)) | |
22 | 1m0e1 12024 | . . . . . . 7 ⊢ (1 − 0) = 1 | |
23 | 21, 22 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑦 = 0 → (1 − 𝑦) = 1) |
24 | 23 | oveq2d 7271 | . . . . 5 ⊢ (𝑦 = 0 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻1)) |
25 | ovex 7288 | . . . . 5 ⊢ (𝑡𝐻1) ∈ V | |
26 | 20, 24, 4, 25 | ovmpo 7411 | . . . 4 ⊢ ((𝑡 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑡𝑀0) = (𝑡𝐻1)) |
27 | 18, 19, 26 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀0) = (𝑡𝐻1)) |
28 | 1, 3, 2, 14 | htpyi 24043 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → ((𝑡𝐻0) = (𝐹‘𝑡) ∧ (𝑡𝐻1) = (𝐺‘𝑡))) |
29 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝐻1) = (𝐺‘𝑡)) |
30 | 27, 29 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀0) = (𝐺‘𝑡)) |
31 | 1elunit 13131 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
32 | oveq2 7263 | . . . . . . 7 ⊢ (𝑦 = 1 → (1 − 𝑦) = (1 − 1)) | |
33 | 1m1e0 11975 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
34 | 32, 33 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑦 = 1 → (1 − 𝑦) = 0) |
35 | 34 | oveq2d 7271 | . . . . 5 ⊢ (𝑦 = 1 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻0)) |
36 | ovex 7288 | . . . . 5 ⊢ (𝑡𝐻0) ∈ V | |
37 | 20, 35, 4, 36 | ovmpo 7411 | . . . 4 ⊢ ((𝑡 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑡𝑀1) = (𝑡𝐻0)) |
38 | 18, 31, 37 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀1) = (𝑡𝐻0)) |
39 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝐻0) = (𝐹‘𝑡)) |
40 | 38, 39 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀1) = (𝐹‘𝑡)) |
41 | 1, 2, 3, 17, 30, 40 | ishtpyd 24044 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 1c1 10803 − cmin 11135 [,]cicc 13011 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 IIcii 23944 Htpy chtpy 24036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-ii 23946 df-htpy 24039 |
This theorem is referenced by: phtpycom 24057 |
Copyright terms: Public domain | W3C validator |