| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpycom | Structured version Visualization version GIF version | ||
| Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| htpycom.6 | ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) |
| htpycom.7 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
| Ref | Expression |
|---|---|
| htpycom | ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishtpy.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | ishtpy.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 3 | ishtpy.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 4 | htpycom.6 | . . 3 ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) | |
| 5 | iitopon 24800 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 7 | 1, 6 | cnmpt1st 23584 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
| 8 | 1, 6 | cnmpt2nd 23585 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
| 9 | iirevcn 24852 | . . . . . 6 ⊢ (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)) |
| 11 | oveq2 7360 | . . . . 5 ⊢ (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦)) | |
| 12 | 1, 6, 8, 6, 10, 11 | cnmpt21 23587 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((𝐽 ×t II) Cn II)) |
| 13 | 1, 3, 2 | htpycn 24900 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
| 14 | htpycom.7 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | |
| 15 | 13, 14 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 16 | 1, 6, 7, 12, 15 | cnmpt22f 23591 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 17 | 4, 16 | eqeltrid 2837 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 18 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → 𝑡 ∈ 𝑋) | |
| 19 | 0elunit 13371 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 20 | oveq1 7359 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑥𝐻(1 − 𝑦)) = (𝑡𝐻(1 − 𝑦))) | |
| 21 | oveq2 7360 | . . . . . . 7 ⊢ (𝑦 = 0 → (1 − 𝑦) = (1 − 0)) | |
| 22 | 1m0e1 12248 | . . . . . . 7 ⊢ (1 − 0) = 1 | |
| 23 | 21, 22 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑦 = 0 → (1 − 𝑦) = 1) |
| 24 | 23 | oveq2d 7368 | . . . . 5 ⊢ (𝑦 = 0 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻1)) |
| 25 | ovex 7385 | . . . . 5 ⊢ (𝑡𝐻1) ∈ V | |
| 26 | 20, 24, 4, 25 | ovmpo 7512 | . . . 4 ⊢ ((𝑡 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑡𝑀0) = (𝑡𝐻1)) |
| 27 | 18, 19, 26 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀0) = (𝑡𝐻1)) |
| 28 | 1, 3, 2, 14 | htpyi 24901 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → ((𝑡𝐻0) = (𝐹‘𝑡) ∧ (𝑡𝐻1) = (𝐺‘𝑡))) |
| 29 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝐻1) = (𝐺‘𝑡)) |
| 30 | 27, 29 | eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀0) = (𝐺‘𝑡)) |
| 31 | 1elunit 13372 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 32 | oveq2 7360 | . . . . . . 7 ⊢ (𝑦 = 1 → (1 − 𝑦) = (1 − 1)) | |
| 33 | 1m1e0 12204 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 34 | 32, 33 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑦 = 1 → (1 − 𝑦) = 0) |
| 35 | 34 | oveq2d 7368 | . . . . 5 ⊢ (𝑦 = 1 → (𝑡𝐻(1 − 𝑦)) = (𝑡𝐻0)) |
| 36 | ovex 7385 | . . . . 5 ⊢ (𝑡𝐻0) ∈ V | |
| 37 | 20, 35, 4, 36 | ovmpo 7512 | . . . 4 ⊢ ((𝑡 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑡𝑀1) = (𝑡𝐻0)) |
| 38 | 18, 31, 37 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀1) = (𝑡𝐻0)) |
| 39 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝐻0) = (𝐹‘𝑡)) |
| 40 | 38, 39 | eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑋) → (𝑡𝑀1) = (𝐹‘𝑡)) |
| 41 | 1, 2, 3, 17, 30, 40 | ishtpyd 24902 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 1c1 11014 − cmin 11351 [,]cicc 13250 TopOnctopon 22826 Cn ccn 23140 ×t ctx 23476 IIcii 24796 Htpy chtpy 24894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 df-hmeo 23671 df-xms 24236 df-ms 24237 df-tms 24238 df-ii 24798 df-htpy 24897 |
| This theorem is referenced by: phtpycom 24915 |
| Copyright terms: Public domain | W3C validator |