![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpycom | Structured version Visualization version GIF version |
Description: Given a homotopy from πΉ to πΊ, produce a homotopy from πΊ to πΉ. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | β’ (π β π½ β (TopOnβπ)) |
ishtpy.3 | β’ (π β πΉ β (π½ Cn πΎ)) |
ishtpy.4 | β’ (π β πΊ β (π½ Cn πΎ)) |
htpycom.6 | β’ π = (π₯ β π, π¦ β (0[,]1) β¦ (π₯π»(1 β π¦))) |
htpycom.7 | β’ (π β π» β (πΉ(π½ Htpy πΎ)πΊ)) |
Ref | Expression |
---|---|
htpycom | β’ (π β π β (πΊ(π½ Htpy πΎ)πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpy.1 | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | ishtpy.4 | . 2 β’ (π β πΊ β (π½ Cn πΎ)) | |
3 | ishtpy.3 | . 2 β’ (π β πΉ β (π½ Cn πΎ)) | |
4 | htpycom.6 | . . 3 β’ π = (π₯ β π, π¦ β (0[,]1) β¦ (π₯π»(1 β π¦))) | |
5 | iitopon 24620 | . . . . 5 β’ II β (TopOnβ(0[,]1)) | |
6 | 5 | a1i 11 | . . . 4 β’ (π β II β (TopOnβ(0[,]1))) |
7 | 1, 6 | cnmpt1st 23393 | . . . 4 β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ π₯) β ((π½ Γt II) Cn π½)) |
8 | 1, 6 | cnmpt2nd 23394 | . . . . 5 β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ π¦) β ((π½ Γt II) Cn II)) |
9 | iirevcn 24672 | . . . . . 6 β’ (π§ β (0[,]1) β¦ (1 β π§)) β (II Cn II) | |
10 | 9 | a1i 11 | . . . . 5 β’ (π β (π§ β (0[,]1) β¦ (1 β π§)) β (II Cn II)) |
11 | oveq2 7420 | . . . . 5 β’ (π§ = π¦ β (1 β π§) = (1 β π¦)) | |
12 | 1, 6, 8, 6, 10, 11 | cnmpt21 23396 | . . . 4 β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ (1 β π¦)) β ((π½ Γt II) Cn II)) |
13 | 1, 3, 2 | htpycn 24720 | . . . . 5 β’ (π β (πΉ(π½ Htpy πΎ)πΊ) β ((π½ Γt II) Cn πΎ)) |
14 | htpycom.7 | . . . . 5 β’ (π β π» β (πΉ(π½ Htpy πΎ)πΊ)) | |
15 | 13, 14 | sseldd 3983 | . . . 4 β’ (π β π» β ((π½ Γt II) Cn πΎ)) |
16 | 1, 6, 7, 12, 15 | cnmpt22f 23400 | . . 3 β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ (π₯π»(1 β π¦))) β ((π½ Γt II) Cn πΎ)) |
17 | 4, 16 | eqeltrid 2836 | . 2 β’ (π β π β ((π½ Γt II) Cn πΎ)) |
18 | simpr 484 | . . . 4 β’ ((π β§ π‘ β π) β π‘ β π) | |
19 | 0elunit 13451 | . . . 4 β’ 0 β (0[,]1) | |
20 | oveq1 7419 | . . . . 5 β’ (π₯ = π‘ β (π₯π»(1 β π¦)) = (π‘π»(1 β π¦))) | |
21 | oveq2 7420 | . . . . . . 7 β’ (π¦ = 0 β (1 β π¦) = (1 β 0)) | |
22 | 1m0e1 12338 | . . . . . . 7 β’ (1 β 0) = 1 | |
23 | 21, 22 | eqtrdi 2787 | . . . . . 6 β’ (π¦ = 0 β (1 β π¦) = 1) |
24 | 23 | oveq2d 7428 | . . . . 5 β’ (π¦ = 0 β (π‘π»(1 β π¦)) = (π‘π»1)) |
25 | ovex 7445 | . . . . 5 β’ (π‘π»1) β V | |
26 | 20, 24, 4, 25 | ovmpo 7571 | . . . 4 β’ ((π‘ β π β§ 0 β (0[,]1)) β (π‘π0) = (π‘π»1)) |
27 | 18, 19, 26 | sylancl 585 | . . 3 β’ ((π β§ π‘ β π) β (π‘π0) = (π‘π»1)) |
28 | 1, 3, 2, 14 | htpyi 24721 | . . . 4 β’ ((π β§ π‘ β π) β ((π‘π»0) = (πΉβπ‘) β§ (π‘π»1) = (πΊβπ‘))) |
29 | 28 | simprd 495 | . . 3 β’ ((π β§ π‘ β π) β (π‘π»1) = (πΊβπ‘)) |
30 | 27, 29 | eqtrd 2771 | . 2 β’ ((π β§ π‘ β π) β (π‘π0) = (πΊβπ‘)) |
31 | 1elunit 13452 | . . . 4 β’ 1 β (0[,]1) | |
32 | oveq2 7420 | . . . . . . 7 β’ (π¦ = 1 β (1 β π¦) = (1 β 1)) | |
33 | 1m1e0 12289 | . . . . . . 7 β’ (1 β 1) = 0 | |
34 | 32, 33 | eqtrdi 2787 | . . . . . 6 β’ (π¦ = 1 β (1 β π¦) = 0) |
35 | 34 | oveq2d 7428 | . . . . 5 β’ (π¦ = 1 β (π‘π»(1 β π¦)) = (π‘π»0)) |
36 | ovex 7445 | . . . . 5 β’ (π‘π»0) β V | |
37 | 20, 35, 4, 36 | ovmpo 7571 | . . . 4 β’ ((π‘ β π β§ 1 β (0[,]1)) β (π‘π1) = (π‘π»0)) |
38 | 18, 31, 37 | sylancl 585 | . . 3 β’ ((π β§ π‘ β π) β (π‘π1) = (π‘π»0)) |
39 | 28 | simpld 494 | . . 3 β’ ((π β§ π‘ β π) β (π‘π»0) = (πΉβπ‘)) |
40 | 38, 39 | eqtrd 2771 | . 2 β’ ((π β§ π‘ β π) β (π‘π1) = (πΉβπ‘)) |
41 | 1, 2, 3, 17, 30, 40 | ishtpyd 24722 | 1 β’ (π β π β (πΊ(π½ Htpy πΎ)πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β¦ cmpt 5231 βcfv 6543 (class class class)co 7412 β cmpo 7414 0cc0 11113 1c1 11114 β cmin 11449 [,]cicc 13332 TopOnctopon 22633 Cn ccn 22949 Γt ctx 23285 IIcii 24616 Htpy chtpy 24714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cn 22952 df-cnp 22953 df-tx 23287 df-hmeo 23480 df-xms 24047 df-ms 24048 df-tms 24049 df-ii 24618 df-htpy 24717 |
This theorem is referenced by: phtpycom 24735 |
Copyright terms: Public domain | W3C validator |