MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   GIF version

Theorem htpyco1 24141
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
htpyco1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyco1.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
htpyco1.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
htpyco1.g (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
htpyco1.h (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
Assertion
Ref Expression
htpyco1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpyco1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyco1.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 htpyco1.f . . 3 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
4 cnco 22417 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
52, 3, 4syl2anc 584 . 2 (𝜑 → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
6 htpyco1.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
7 cnco 22417 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
82, 6, 7syl2anc 584 . 2 (𝜑 → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
9 htpyco1.n . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
10 iitopon 24042 . . . . 5 II ∈ (TopOn‘(0[,]1))
1110a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
121, 11cnmpt1st 22819 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
131, 11, 12, 2cnmpt21f 22823 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
141, 11cnmpt2nd 22820 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
15 cntop2 22392 . . . . . . . 8 (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
162, 15syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
17 toptopon2 22067 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1816, 17sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1918, 3, 6htpycn 24136 . . . . 5 (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿))
20 htpyco1.h . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
2119, 20sseldd 3922 . . . 4 (𝜑𝐻 ∈ ((𝐾 ×t II) Cn 𝐿))
221, 11, 13, 14, 21cnmpt22f 22826 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿))
239, 22eqeltrid 2843 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐿))
24 cnf2 22400 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋 𝐾)
251, 18, 2, 24syl3anc 1370 . . . . . 6 (𝜑𝑃:𝑋 𝐾)
2625ffvelrnda 6961 . . . . 5 ((𝜑𝑠𝑋) → (𝑃𝑠) ∈ 𝐾)
2718, 3, 6, 20htpyi 24137 . . . . 5 ((𝜑 ∧ (𝑃𝑠) ∈ 𝐾) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2826, 27syldan 591 . . . 4 ((𝜑𝑠𝑋) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2928simpld 495 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)))
30 simpr 485 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
31 0elunit 13201 . . . 4 0 ∈ (0[,]1)
32 fveq2 6774 . . . . . 6 (𝑥 = 𝑠 → (𝑃𝑥) = (𝑃𝑠))
33 id 22 . . . . . 6 (𝑦 = 0 → 𝑦 = 0)
3432, 33oveqan12d 7294 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻0))
35 ovex 7308 . . . . 5 ((𝑃𝑠)𝐻0) ∈ V
3634, 9, 35ovmpoa 7428 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
3730, 31, 36sylancl 586 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
38 fvco3 6867 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
3925, 38sylan 580 . . 3 ((𝜑𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4029, 37, 393eqtr4d 2788 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝐹𝑃)‘𝑠))
4128simprd 496 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠)))
42 1elunit 13202 . . . 4 1 ∈ (0[,]1)
43 id 22 . . . . . 6 (𝑦 = 1 → 𝑦 = 1)
4432, 43oveqan12d 7294 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻1))
45 ovex 7308 . . . . 5 ((𝑃𝑠)𝐻1) ∈ V
4644, 9, 45ovmpoa 7428 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
4730, 42, 46sylancl 586 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
48 fvco3 6867 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
4925, 48sylan 580 . . 3 ((𝜑𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5041, 47, 493eqtr4d 2788 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝐺𝑃)‘𝑠))
511, 5, 8, 23, 40, 50ishtpyd 24138 1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   cuni 4839  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872  [,]cicc 13082  Topctop 22042  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  IIcii 24038   Htpy chtpy 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-tx 22713  df-ii 24040  df-htpy 24133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator