MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   GIF version

Theorem htpyco1 25029
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
htpyco1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyco1.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
htpyco1.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
htpyco1.g (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
htpyco1.h (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
Assertion
Ref Expression
htpyco1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpyco1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyco1.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 htpyco1.f . . 3 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
4 cnco 23295 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
52, 3, 4syl2anc 583 . 2 (𝜑 → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
6 htpyco1.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
7 cnco 23295 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
82, 6, 7syl2anc 583 . 2 (𝜑 → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
9 htpyco1.n . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
10 iitopon 24924 . . . . 5 II ∈ (TopOn‘(0[,]1))
1110a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
121, 11cnmpt1st 23697 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
131, 11, 12, 2cnmpt21f 23701 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
141, 11cnmpt2nd 23698 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
15 cntop2 23270 . . . . . . . 8 (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
162, 15syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
17 toptopon2 22945 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1816, 17sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1918, 3, 6htpycn 25024 . . . . 5 (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿))
20 htpyco1.h . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
2119, 20sseldd 4009 . . . 4 (𝜑𝐻 ∈ ((𝐾 ×t II) Cn 𝐿))
221, 11, 13, 14, 21cnmpt22f 23704 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿))
239, 22eqeltrid 2848 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐿))
24 cnf2 23278 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋 𝐾)
251, 18, 2, 24syl3anc 1371 . . . . . 6 (𝜑𝑃:𝑋 𝐾)
2625ffvelcdmda 7118 . . . . 5 ((𝜑𝑠𝑋) → (𝑃𝑠) ∈ 𝐾)
2718, 3, 6, 20htpyi 25025 . . . . 5 ((𝜑 ∧ (𝑃𝑠) ∈ 𝐾) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2826, 27syldan 590 . . . 4 ((𝜑𝑠𝑋) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2928simpld 494 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)))
30 simpr 484 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
31 0elunit 13529 . . . 4 0 ∈ (0[,]1)
32 fveq2 6920 . . . . . 6 (𝑥 = 𝑠 → (𝑃𝑥) = (𝑃𝑠))
33 id 22 . . . . . 6 (𝑦 = 0 → 𝑦 = 0)
3432, 33oveqan12d 7467 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻0))
35 ovex 7481 . . . . 5 ((𝑃𝑠)𝐻0) ∈ V
3634, 9, 35ovmpoa 7605 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
3730, 31, 36sylancl 585 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
38 fvco3 7021 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
3925, 38sylan 579 . . 3 ((𝜑𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4029, 37, 393eqtr4d 2790 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝐹𝑃)‘𝑠))
4128simprd 495 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠)))
42 1elunit 13530 . . . 4 1 ∈ (0[,]1)
43 id 22 . . . . . 6 (𝑦 = 1 → 𝑦 = 1)
4432, 43oveqan12d 7467 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻1))
45 ovex 7481 . . . . 5 ((𝑃𝑠)𝐻1) ∈ V
4644, 9, 45ovmpoa 7605 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
4730, 42, 46sylancl 585 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
48 fvco3 7021 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
4925, 48sylan 579 . . 3 ((𝜑𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5041, 47, 493eqtr4d 2790 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝐺𝑃)‘𝑠))
511, 5, 8, 23, 40, 50ishtpyd 25026 1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   cuni 4931  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  [,]cicc 13410  Topctop 22920  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  IIcii 24920   Htpy chtpy 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591  df-ii 24922  df-htpy 25021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator