MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   GIF version

Theorem htpyco1 23275
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
htpyco1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyco1.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
htpyco1.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
htpyco1.g (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
htpyco1.h (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
Assertion
Ref Expression
htpyco1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpyco1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyco1.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 htpyco1.f . . 3 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
4 cnco 21568 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
52, 3, 4syl2anc 576 . 2 (𝜑 → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
6 htpyco1.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
7 cnco 21568 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
82, 6, 7syl2anc 576 . 2 (𝜑 → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
9 htpyco1.n . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
10 iitopon 23180 . . . . 5 II ∈ (TopOn‘(0[,]1))
1110a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
121, 11cnmpt1st 21970 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
131, 11, 12, 2cnmpt21f 21974 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
141, 11cnmpt2nd 21971 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
15 cntop2 21543 . . . . . . . 8 (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
162, 15syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
17 toptopon2 21220 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1816, 17sylib 210 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1918, 3, 6htpycn 23270 . . . . 5 (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿))
20 htpyco1.h . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
2119, 20sseldd 3855 . . . 4 (𝜑𝐻 ∈ ((𝐾 ×t II) Cn 𝐿))
221, 11, 13, 14, 21cnmpt22f 21977 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿))
239, 22syl5eqel 2864 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐿))
24 cnf2 21551 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋 𝐾)
251, 18, 2, 24syl3anc 1351 . . . . . 6 (𝜑𝑃:𝑋 𝐾)
2625ffvelrnda 6670 . . . . 5 ((𝜑𝑠𝑋) → (𝑃𝑠) ∈ 𝐾)
2718, 3, 6, 20htpyi 23271 . . . . 5 ((𝜑 ∧ (𝑃𝑠) ∈ 𝐾) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2826, 27syldan 582 . . . 4 ((𝜑𝑠𝑋) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2928simpld 487 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)))
30 simpr 477 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
31 0elunit 12664 . . . 4 0 ∈ (0[,]1)
32 fveq2 6493 . . . . . 6 (𝑥 = 𝑠 → (𝑃𝑥) = (𝑃𝑠))
33 id 22 . . . . . 6 (𝑦 = 0 → 𝑦 = 0)
3432, 33oveqan12d 6989 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻0))
35 ovex 7002 . . . . 5 ((𝑃𝑠)𝐻0) ∈ V
3634, 9, 35ovmpoa 7115 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
3730, 31, 36sylancl 577 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
38 fvco3 6582 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
3925, 38sylan 572 . . 3 ((𝜑𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4029, 37, 393eqtr4d 2818 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝐹𝑃)‘𝑠))
4128simprd 488 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠)))
42 1elunit 12665 . . . 4 1 ∈ (0[,]1)
43 id 22 . . . . . 6 (𝑦 = 1 → 𝑦 = 1)
4432, 43oveqan12d 6989 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻1))
45 ovex 7002 . . . . 5 ((𝑃𝑠)𝐻1) ∈ V
4644, 9, 45ovmpoa 7115 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
4730, 42, 46sylancl 577 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
48 fvco3 6582 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
4925, 48sylan 572 . . 3 ((𝜑𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5041, 47, 493eqtr4d 2818 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝐺𝑃)‘𝑠))
511, 5, 8, 23, 40, 50ishtpyd 23272 1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048   cuni 4706  ccom 5404  wf 6178  cfv 6182  (class class class)co 6970  cmpo 6972  0cc0 10327  1c1 10328  [,]cicc 12550  Topctop 21195  TopOnctopon 21212   Cn ccn 21526   ×t ctx 21862  IIcii 23176   Htpy chtpy 23264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-icc 12554  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-topgen 16563  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-top 21196  df-topon 21213  df-bases 21248  df-cn 21529  df-tx 21864  df-ii 23178  df-htpy 23267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator