Step | Hyp | Ref
| Expression |
1 | | htpyco1.j |
. 2
β’ (π β π½ β (TopOnβπ)) |
2 | | htpyco1.p |
. . 3
β’ (π β π β (π½ Cn πΎ)) |
3 | | htpyco1.f |
. . 3
β’ (π β πΉ β (πΎ Cn πΏ)) |
4 | | cnco 22990 |
. . 3
β’ ((π β (π½ Cn πΎ) β§ πΉ β (πΎ Cn πΏ)) β (πΉ β π) β (π½ Cn πΏ)) |
5 | 2, 3, 4 | syl2anc 582 |
. 2
β’ (π β (πΉ β π) β (π½ Cn πΏ)) |
6 | | htpyco1.g |
. . 3
β’ (π β πΊ β (πΎ Cn πΏ)) |
7 | | cnco 22990 |
. . 3
β’ ((π β (π½ Cn πΎ) β§ πΊ β (πΎ Cn πΏ)) β (πΊ β π) β (π½ Cn πΏ)) |
8 | 2, 6, 7 | syl2anc 582 |
. 2
β’ (π β (πΊ β π) β (π½ Cn πΏ)) |
9 | | htpyco1.n |
. . 3
β’ π = (π₯ β π, π¦ β (0[,]1) β¦ ((πβπ₯)π»π¦)) |
10 | | iitopon 24619 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
11 | 10 | a1i 11 |
. . . 4
β’ (π β II β
(TopOnβ(0[,]1))) |
12 | 1, 11 | cnmpt1st 23392 |
. . . . 5
β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ π₯) β ((π½ Γt II) Cn π½)) |
13 | 1, 11, 12, 2 | cnmpt21f 23396 |
. . . 4
β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ (πβπ₯)) β ((π½ Γt II) Cn πΎ)) |
14 | 1, 11 | cnmpt2nd 23393 |
. . . 4
β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ π¦) β ((π½ Γt II) Cn
II)) |
15 | | cntop2 22965 |
. . . . . . . 8
β’ (π β (π½ Cn πΎ) β πΎ β Top) |
16 | 2, 15 | syl 17 |
. . . . . . 7
β’ (π β πΎ β Top) |
17 | | toptopon2 22640 |
. . . . . . 7
β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) |
18 | 16, 17 | sylib 217 |
. . . . . 6
β’ (π β πΎ β (TopOnββͺ πΎ)) |
19 | 18, 3, 6 | htpycn 24719 |
. . . . 5
β’ (π β (πΉ(πΎ Htpy πΏ)πΊ) β ((πΎ Γt II) Cn πΏ)) |
20 | | htpyco1.h |
. . . . 5
β’ (π β π» β (πΉ(πΎ Htpy πΏ)πΊ)) |
21 | 19, 20 | sseldd 3982 |
. . . 4
β’ (π β π» β ((πΎ Γt II) Cn πΏ)) |
22 | 1, 11, 13, 14, 21 | cnmpt22f 23399 |
. . 3
β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ ((πβπ₯)π»π¦)) β ((π½ Γt II) Cn πΏ)) |
23 | 9, 22 | eqeltrid 2835 |
. 2
β’ (π β π β ((π½ Γt II) Cn πΏ)) |
24 | | cnf2 22973 |
. . . . . . 7
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββͺ πΎ)
β§ π β (π½ Cn πΎ)) β π:πβΆβͺ πΎ) |
25 | 1, 18, 2, 24 | syl3anc 1369 |
. . . . . 6
β’ (π β π:πβΆβͺ πΎ) |
26 | 25 | ffvelcdmda 7085 |
. . . . 5
β’ ((π β§ π β π) β (πβπ ) β βͺ πΎ) |
27 | 18, 3, 6, 20 | htpyi 24720 |
. . . . 5
β’ ((π β§ (πβπ ) β βͺ πΎ) β (((πβπ )π»0) = (πΉβ(πβπ )) β§ ((πβπ )π»1) = (πΊβ(πβπ )))) |
28 | 26, 27 | syldan 589 |
. . . 4
β’ ((π β§ π β π) β (((πβπ )π»0) = (πΉβ(πβπ )) β§ ((πβπ )π»1) = (πΊβ(πβπ )))) |
29 | 28 | simpld 493 |
. . 3
β’ ((π β§ π β π) β ((πβπ )π»0) = (πΉβ(πβπ ))) |
30 | | simpr 483 |
. . . 4
β’ ((π β§ π β π) β π β π) |
31 | | 0elunit 13450 |
. . . 4
β’ 0 β
(0[,]1) |
32 | | fveq2 6890 |
. . . . . 6
β’ (π₯ = π β (πβπ₯) = (πβπ )) |
33 | | id 22 |
. . . . . 6
β’ (π¦ = 0 β π¦ = 0) |
34 | 32, 33 | oveqan12d 7430 |
. . . . 5
β’ ((π₯ = π β§ π¦ = 0) β ((πβπ₯)π»π¦) = ((πβπ )π»0)) |
35 | | ovex 7444 |
. . . . 5
β’ ((πβπ )π»0) β V |
36 | 34, 9, 35 | ovmpoa 7565 |
. . . 4
β’ ((π β π β§ 0 β (0[,]1)) β (π π0) = ((πβπ )π»0)) |
37 | 30, 31, 36 | sylancl 584 |
. . 3
β’ ((π β§ π β π) β (π π0) = ((πβπ )π»0)) |
38 | | fvco3 6989 |
. . . 4
β’ ((π:πβΆβͺ πΎ β§ π β π) β ((πΉ β π)βπ ) = (πΉβ(πβπ ))) |
39 | 25, 38 | sylan 578 |
. . 3
β’ ((π β§ π β π) β ((πΉ β π)βπ ) = (πΉβ(πβπ ))) |
40 | 29, 37, 39 | 3eqtr4d 2780 |
. 2
β’ ((π β§ π β π) β (π π0) = ((πΉ β π)βπ )) |
41 | 28 | simprd 494 |
. . 3
β’ ((π β§ π β π) β ((πβπ )π»1) = (πΊβ(πβπ ))) |
42 | | 1elunit 13451 |
. . . 4
β’ 1 β
(0[,]1) |
43 | | id 22 |
. . . . . 6
β’ (π¦ = 1 β π¦ = 1) |
44 | 32, 43 | oveqan12d 7430 |
. . . . 5
β’ ((π₯ = π β§ π¦ = 1) β ((πβπ₯)π»π¦) = ((πβπ )π»1)) |
45 | | ovex 7444 |
. . . . 5
β’ ((πβπ )π»1) β V |
46 | 44, 9, 45 | ovmpoa 7565 |
. . . 4
β’ ((π β π β§ 1 β (0[,]1)) β (π π1) = ((πβπ )π»1)) |
47 | 30, 42, 46 | sylancl 584 |
. . 3
β’ ((π β§ π β π) β (π π1) = ((πβπ )π»1)) |
48 | | fvco3 6989 |
. . . 4
β’ ((π:πβΆβͺ πΎ β§ π β π) β ((πΊ β π)βπ ) = (πΊβ(πβπ ))) |
49 | 25, 48 | sylan 578 |
. . 3
β’ ((π β§ π β π) β ((πΊ β π)βπ ) = (πΊβ(πβπ ))) |
50 | 41, 47, 49 | 3eqtr4d 2780 |
. 2
β’ ((π β§ π β π) β (π π1) = ((πΊ β π)βπ )) |
51 | 1, 5, 8, 23, 40, 50 | ishtpyd 24721 |
1
β’ (π β π β ((πΉ β π)(π½ Htpy πΏ)(πΊ β π))) |