| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpyco1 | Structured version Visualization version GIF version | ||
| Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| htpyco1.n | ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) |
| htpyco1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| htpyco1.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| htpyco1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.h | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) |
| Ref | Expression |
|---|---|
| htpyco1 | ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htpyco1.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | htpyco1.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 3 | htpyco1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 4 | cnco 23274 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 6 | htpyco1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
| 7 | cnco 23274 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 9 | htpyco1.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) | |
| 10 | iitopon 24905 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 12 | 1, 11 | cnmpt1st 23676 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
| 13 | 1, 11, 12, 2 | cnmpt21f 23680 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 14 | 1, 11 | cnmpt2nd 23677 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
| 15 | cntop2 23249 | . . . . . . . 8 ⊢ (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 16 | 2, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 17 | toptopon2 22924 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 19 | 18, 3, 6 | htpycn 25005 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿)) |
| 20 | htpyco1.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) | |
| 21 | 19, 20 | sseldd 3984 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐾 ×t II) Cn 𝐿)) |
| 22 | 1, 11, 13, 14, 21 | cnmpt22f 23683 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 23 | 9, 22 | eqeltrid 2845 | . 2 ⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 24 | cnf2 23257 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋⟶∪ 𝐾) | |
| 25 | 1, 18, 2, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑋⟶∪ 𝐾) |
| 26 | 25 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑃‘𝑠) ∈ ∪ 𝐾) |
| 27 | 18, 3, 6, 20 | htpyi 25006 | . . . . 5 ⊢ ((𝜑 ∧ (𝑃‘𝑠) ∈ ∪ 𝐾) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 28 | 26, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 29 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
| 31 | 0elunit 13509 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 32 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 𝑠 → (𝑃‘𝑥) = (𝑃‘𝑠)) | |
| 33 | id 22 | . . . . . 6 ⊢ (𝑦 = 0 → 𝑦 = 0) | |
| 34 | 32, 33 | oveqan12d 7450 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻0)) |
| 35 | ovex 7464 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻0) ∈ V | |
| 36 | 34, 9, 35 | ovmpoa 7588 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 37 | 30, 31, 36 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 38 | fvco3 7008 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) | |
| 39 | 25, 38 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) |
| 40 | 29, 37, 39 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝐹 ∘ 𝑃)‘𝑠)) |
| 41 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠))) |
| 42 | 1elunit 13510 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 43 | id 22 | . . . . . 6 ⊢ (𝑦 = 1 → 𝑦 = 1) | |
| 44 | 32, 43 | oveqan12d 7450 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻1)) |
| 45 | ovex 7464 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻1) ∈ V | |
| 46 | 44, 9, 45 | ovmpoa 7588 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 47 | 30, 42, 46 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 48 | fvco3 7008 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) | |
| 49 | 25, 48 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) |
| 50 | 41, 47, 49 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝐺 ∘ 𝑃)‘𝑠)) |
| 51 | 1, 5, 8, 23, 40, 50 | ishtpyd 25007 | 1 ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cuni 4907 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 0cc0 11155 1c1 11156 [,]cicc 13390 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 ×t ctx 23568 IIcii 24901 Htpy chtpy 24999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cn 23235 df-tx 23570 df-ii 24903 df-htpy 25002 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |