| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpyco1 | Structured version Visualization version GIF version | ||
| Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| htpyco1.n | ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) |
| htpyco1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| htpyco1.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| htpyco1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.h | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) |
| Ref | Expression |
|---|---|
| htpyco1 | ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htpyco1.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | htpyco1.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 3 | htpyco1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 4 | cnco 23160 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 6 | htpyco1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
| 7 | cnco 23160 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 9 | htpyco1.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) | |
| 10 | iitopon 24779 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 12 | 1, 11 | cnmpt1st 23562 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
| 13 | 1, 11, 12, 2 | cnmpt21f 23566 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 14 | 1, 11 | cnmpt2nd 23563 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
| 15 | cntop2 23135 | . . . . . . . 8 ⊢ (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 16 | 2, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 17 | toptopon2 22812 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 19 | 18, 3, 6 | htpycn 24879 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿)) |
| 20 | htpyco1.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) | |
| 21 | 19, 20 | sseldd 3950 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐾 ×t II) Cn 𝐿)) |
| 22 | 1, 11, 13, 14, 21 | cnmpt22f 23569 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 23 | 9, 22 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 24 | cnf2 23143 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋⟶∪ 𝐾) | |
| 25 | 1, 18, 2, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑋⟶∪ 𝐾) |
| 26 | 25 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑃‘𝑠) ∈ ∪ 𝐾) |
| 27 | 18, 3, 6, 20 | htpyi 24880 | . . . . 5 ⊢ ((𝜑 ∧ (𝑃‘𝑠) ∈ ∪ 𝐾) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 28 | 26, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 29 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
| 31 | 0elunit 13437 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 32 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑠 → (𝑃‘𝑥) = (𝑃‘𝑠)) | |
| 33 | id 22 | . . . . . 6 ⊢ (𝑦 = 0 → 𝑦 = 0) | |
| 34 | 32, 33 | oveqan12d 7409 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻0)) |
| 35 | ovex 7423 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻0) ∈ V | |
| 36 | 34, 9, 35 | ovmpoa 7547 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 37 | 30, 31, 36 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 38 | fvco3 6963 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) | |
| 39 | 25, 38 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) |
| 40 | 29, 37, 39 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝐹 ∘ 𝑃)‘𝑠)) |
| 41 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠))) |
| 42 | 1elunit 13438 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 43 | id 22 | . . . . . 6 ⊢ (𝑦 = 1 → 𝑦 = 1) | |
| 44 | 32, 43 | oveqan12d 7409 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻1)) |
| 45 | ovex 7423 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻1) ∈ V | |
| 46 | 44, 9, 45 | ovmpoa 7547 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 47 | 30, 42, 46 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 48 | fvco3 6963 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) | |
| 49 | 25, 48 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) |
| 50 | 41, 47, 49 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝐺 ∘ 𝑃)‘𝑠)) |
| 51 | 1, 5, 8, 23, 40, 50 | ishtpyd 24881 | 1 ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 1c1 11076 [,]cicc 13316 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 IIcii 24775 Htpy chtpy 24873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 df-tx 23456 df-ii 24777 df-htpy 24876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |