![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpyco1 | Structured version Visualization version GIF version |
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
htpyco1.n | ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) |
htpyco1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
htpyco1.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
htpyco1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
htpyco1.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) |
htpyco1.h | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) |
Ref | Expression |
---|---|
htpyco1 | ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyco1.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | htpyco1.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
3 | htpyco1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
4 | cnco 23290 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
6 | htpyco1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
7 | cnco 23290 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
9 | htpyco1.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) | |
10 | iitopon 24919 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
12 | 1, 11 | cnmpt1st 23692 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
13 | 1, 11, 12, 2 | cnmpt21f 23696 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
14 | 1, 11 | cnmpt2nd 23693 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
15 | cntop2 23265 | . . . . . . . 8 ⊢ (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
16 | 2, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
17 | toptopon2 22940 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
19 | 18, 3, 6 | htpycn 25019 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿)) |
20 | htpyco1.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) | |
21 | 19, 20 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐾 ×t II) Cn 𝐿)) |
22 | 1, 11, 13, 14, 21 | cnmpt22f 23699 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿)) |
23 | 9, 22 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐿)) |
24 | cnf2 23273 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋⟶∪ 𝐾) | |
25 | 1, 18, 2, 24 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑋⟶∪ 𝐾) |
26 | 25 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑃‘𝑠) ∈ ∪ 𝐾) |
27 | 18, 3, 6, 20 | htpyi 25020 | . . . . 5 ⊢ ((𝜑 ∧ (𝑃‘𝑠) ∈ ∪ 𝐾) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
28 | 26, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
29 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠))) |
30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
31 | 0elunit 13506 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
32 | fveq2 6907 | . . . . . 6 ⊢ (𝑥 = 𝑠 → (𝑃‘𝑥) = (𝑃‘𝑠)) | |
33 | id 22 | . . . . . 6 ⊢ (𝑦 = 0 → 𝑦 = 0) | |
34 | 32, 33 | oveqan12d 7450 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻0)) |
35 | ovex 7464 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻0) ∈ V | |
36 | 34, 9, 35 | ovmpoa 7588 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
37 | 30, 31, 36 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
38 | fvco3 7008 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) | |
39 | 25, 38 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) |
40 | 29, 37, 39 | 3eqtr4d 2785 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝐹 ∘ 𝑃)‘𝑠)) |
41 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠))) |
42 | 1elunit 13507 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
43 | id 22 | . . . . . 6 ⊢ (𝑦 = 1 → 𝑦 = 1) | |
44 | 32, 43 | oveqan12d 7450 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻1)) |
45 | ovex 7464 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻1) ∈ V | |
46 | 44, 9, 45 | ovmpoa 7588 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
47 | 30, 42, 46 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
48 | fvco3 7008 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) | |
49 | 25, 48 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) |
50 | 41, 47, 49 | 3eqtr4d 2785 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝐺 ∘ 𝑃)‘𝑠)) |
51 | 1, 5, 8, 23, 40, 50 | ishtpyd 25021 | 1 ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 0cc0 11153 1c1 11154 [,]cicc 13387 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 ×t ctx 23584 IIcii 24915 Htpy chtpy 25013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cn 23251 df-tx 23586 df-ii 24917 df-htpy 25016 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |