| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpyco1 | Structured version Visualization version GIF version | ||
| Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| htpyco1.n | ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) |
| htpyco1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| htpyco1.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| htpyco1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) |
| htpyco1.h | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) |
| Ref | Expression |
|---|---|
| htpyco1 | ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htpyco1.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | htpyco1.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 3 | htpyco1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
| 4 | cnco 23169 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 6 | htpyco1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
| 7 | cnco 23169 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
| 9 | htpyco1.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) | |
| 10 | iitopon 24788 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 12 | 1, 11 | cnmpt1st 23571 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
| 13 | 1, 11, 12, 2 | cnmpt21f 23575 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
| 14 | 1, 11 | cnmpt2nd 23572 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
| 15 | cntop2 23144 | . . . . . . . 8 ⊢ (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 16 | 2, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 17 | toptopon2 22821 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 19 | 18, 3, 6 | htpycn 24888 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿)) |
| 20 | htpyco1.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) | |
| 21 | 19, 20 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐾 ×t II) Cn 𝐿)) |
| 22 | 1, 11, 13, 14, 21 | cnmpt22f 23578 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 23 | 9, 22 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐿)) |
| 24 | cnf2 23152 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋⟶∪ 𝐾) | |
| 25 | 1, 18, 2, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑋⟶∪ 𝐾) |
| 26 | 25 | ffvelcdmda 7022 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑃‘𝑠) ∈ ∪ 𝐾) |
| 27 | 18, 3, 6, 20 | htpyi 24889 | . . . . 5 ⊢ ((𝜑 ∧ (𝑃‘𝑠) ∈ ∪ 𝐾) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 28 | 26, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
| 29 | 28 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
| 31 | 0elunit 13390 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 32 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = 𝑠 → (𝑃‘𝑥) = (𝑃‘𝑠)) | |
| 33 | id 22 | . . . . . 6 ⊢ (𝑦 = 0 → 𝑦 = 0) | |
| 34 | 32, 33 | oveqan12d 7372 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻0)) |
| 35 | ovex 7386 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻0) ∈ V | |
| 36 | 34, 9, 35 | ovmpoa 7508 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 37 | 30, 31, 36 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
| 38 | fvco3 6926 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) | |
| 39 | 25, 38 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) |
| 40 | 29, 37, 39 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝐹 ∘ 𝑃)‘𝑠)) |
| 41 | 28 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠))) |
| 42 | 1elunit 13391 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 43 | id 22 | . . . . . 6 ⊢ (𝑦 = 1 → 𝑦 = 1) | |
| 44 | 32, 43 | oveqan12d 7372 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻1)) |
| 45 | ovex 7386 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻1) ∈ V | |
| 46 | 44, 9, 45 | ovmpoa 7508 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 47 | 30, 42, 46 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
| 48 | fvco3 6926 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) | |
| 49 | 25, 48 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) |
| 50 | 41, 47, 49 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝐺 ∘ 𝑃)‘𝑠)) |
| 51 | 1, 5, 8, 23, 40, 50 | ishtpyd 24890 | 1 ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 [,]cicc 13269 Topctop 22796 TopOnctopon 22813 Cn ccn 23127 ×t ctx 23463 IIcii 24784 Htpy chtpy 24882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 df-tx 23465 df-ii 24786 df-htpy 24885 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |