MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   GIF version

Theorem htpyco1 23829
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
htpyco1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyco1.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
htpyco1.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
htpyco1.g (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
htpyco1.h (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
Assertion
Ref Expression
htpyco1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpyco1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyco1.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 htpyco1.f . . 3 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
4 cnco 22117 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
52, 3, 4syl2anc 587 . 2 (𝜑 → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
6 htpyco1.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
7 cnco 22117 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
82, 6, 7syl2anc 587 . 2 (𝜑 → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
9 htpyco1.n . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
10 iitopon 23730 . . . . 5 II ∈ (TopOn‘(0[,]1))
1110a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
121, 11cnmpt1st 22519 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
131, 11, 12, 2cnmpt21f 22523 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
141, 11cnmpt2nd 22520 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
15 cntop2 22092 . . . . . . . 8 (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
162, 15syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
17 toptopon2 21769 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1816, 17sylib 221 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
1918, 3, 6htpycn 23824 . . . . 5 (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿))
20 htpyco1.h . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
2119, 20sseldd 3888 . . . 4 (𝜑𝐻 ∈ ((𝐾 ×t II) Cn 𝐿))
221, 11, 13, 14, 21cnmpt22f 22526 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿))
239, 22eqeltrid 2835 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐿))
24 cnf2 22100 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋 𝐾)
251, 18, 2, 24syl3anc 1373 . . . . . 6 (𝜑𝑃:𝑋 𝐾)
2625ffvelrnda 6882 . . . . 5 ((𝜑𝑠𝑋) → (𝑃𝑠) ∈ 𝐾)
2718, 3, 6, 20htpyi 23825 . . . . 5 ((𝜑 ∧ (𝑃𝑠) ∈ 𝐾) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2826, 27syldan 594 . . . 4 ((𝜑𝑠𝑋) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2928simpld 498 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)))
30 simpr 488 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
31 0elunit 13022 . . . 4 0 ∈ (0[,]1)
32 fveq2 6695 . . . . . 6 (𝑥 = 𝑠 → (𝑃𝑥) = (𝑃𝑠))
33 id 22 . . . . . 6 (𝑦 = 0 → 𝑦 = 0)
3432, 33oveqan12d 7210 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻0))
35 ovex 7224 . . . . 5 ((𝑃𝑠)𝐻0) ∈ V
3634, 9, 35ovmpoa 7342 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
3730, 31, 36sylancl 589 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
38 fvco3 6788 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
3925, 38sylan 583 . . 3 ((𝜑𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4029, 37, 393eqtr4d 2781 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝐹𝑃)‘𝑠))
4128simprd 499 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠)))
42 1elunit 13023 . . . 4 1 ∈ (0[,]1)
43 id 22 . . . . . 6 (𝑦 = 1 → 𝑦 = 1)
4432, 43oveqan12d 7210 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻1))
45 ovex 7224 . . . . 5 ((𝑃𝑠)𝐻1) ∈ V
4644, 9, 45ovmpoa 7342 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
4730, 42, 46sylancl 589 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
48 fvco3 6788 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
4925, 48sylan 583 . . 3 ((𝜑𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5041, 47, 493eqtr4d 2781 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝐺𝑃)‘𝑠))
511, 5, 8, 23, 40, 50ishtpyd 23826 1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112   cuni 4805  ccom 5540  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  0cc0 10694  1c1 10695  [,]cicc 12903  Topctop 21744  TopOnctopon 21761   Cn ccn 22075   ×t ctx 22411  IIcii 23726   Htpy chtpy 23818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-icc 12907  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-bases 21797  df-cn 22078  df-tx 22413  df-ii 23728  df-htpy 23821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator