Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htpyi | Structured version Visualization version GIF version |
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
htpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Ref | Expression |
---|---|
htpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | |
2 | ishtpy.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | ishtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
4 | ishtpy.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
5 | 2, 3, 4 | ishtpy 24116 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
8 | oveq1 7275 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻0) = (𝐴𝐻0)) | |
9 | fveq2 6768 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐹‘𝑠) = (𝐹‘𝐴)) | |
10 | 8, 9 | eqeq12d 2755 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻0) = (𝐹‘𝑠) ↔ (𝐴𝐻0) = (𝐹‘𝐴))) |
11 | oveq1 7275 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻1) = (𝐴𝐻1)) | |
12 | fveq2 6768 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐺‘𝑠) = (𝐺‘𝐴)) | |
13 | 11, 12 | eqeq12d 2755 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻1) = (𝐺‘𝑠) ↔ (𝐴𝐻1) = (𝐺‘𝐴))) |
14 | 10, 13 | anbi12d 630 | . . 3 ⊢ (𝑠 = 𝐴 → (((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ↔ ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴)))) |
15 | 14 | rspccva 3559 | . 2 ⊢ ((∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
16 | 7, 15 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 TopOnctopon 22040 Cn ccn 22356 ×t ctx 22692 IIcii 24019 Htpy chtpy 24111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-map 8591 df-top 22024 df-topon 22041 df-cn 22359 df-htpy 24114 |
This theorem is referenced by: htpycom 24120 htpyco1 24122 htpyco2 24123 htpycc 24124 phtpy01 24129 pcohtpylem 24163 txsconnlem 33181 cvmliftphtlem 33258 |
Copyright terms: Public domain | W3C validator |