Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htpyi | Structured version Visualization version GIF version |
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
htpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Ref | Expression |
---|---|
htpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | |
2 | ishtpy.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | ishtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
4 | ishtpy.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
5 | 2, 3, 4 | ishtpy 24184 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
6 | 1, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
7 | 6 | simprd 497 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
8 | oveq1 7314 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻0) = (𝐴𝐻0)) | |
9 | fveq2 6804 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐹‘𝑠) = (𝐹‘𝐴)) | |
10 | 8, 9 | eqeq12d 2752 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻0) = (𝐹‘𝑠) ↔ (𝐴𝐻0) = (𝐹‘𝐴))) |
11 | oveq1 7314 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻1) = (𝐴𝐻1)) | |
12 | fveq2 6804 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐺‘𝑠) = (𝐺‘𝐴)) | |
13 | 11, 12 | eqeq12d 2752 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻1) = (𝐺‘𝑠) ↔ (𝐴𝐻1) = (𝐺‘𝐴))) |
14 | 10, 13 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝐴 → (((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ↔ ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴)))) |
15 | 14 | rspccva 3565 | . 2 ⊢ ((∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
16 | 7, 15 | sylan 581 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ‘cfv 6458 (class class class)co 7307 0cc0 10921 1c1 10922 TopOnctopon 22108 Cn ccn 22424 ×t ctx 22760 IIcii 24087 Htpy chtpy 24179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-map 8648 df-top 22092 df-topon 22109 df-cn 22427 df-htpy 24182 |
This theorem is referenced by: htpycom 24188 htpyco1 24190 htpyco2 24191 htpycc 24192 phtpy01 24197 pcohtpylem 24231 txsconnlem 33251 cvmliftphtlem 33328 |
Copyright terms: Public domain | W3C validator |