![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpyi | Structured version Visualization version GIF version |
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | β’ (π β π½ β (TopOnβπ)) |
ishtpy.3 | β’ (π β πΉ β (π½ Cn πΎ)) |
ishtpy.4 | β’ (π β πΊ β (π½ Cn πΎ)) |
htpyi.1 | β’ (π β π» β (πΉ(π½ Htpy πΎ)πΊ)) |
Ref | Expression |
---|---|
htpyi | β’ ((π β§ π΄ β π) β ((π΄π»0) = (πΉβπ΄) β§ (π΄π»1) = (πΊβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyi.1 | . . . 4 β’ (π β π» β (πΉ(π½ Htpy πΎ)πΊ)) | |
2 | ishtpy.1 | . . . . 5 β’ (π β π½ β (TopOnβπ)) | |
3 | ishtpy.3 | . . . . 5 β’ (π β πΉ β (π½ Cn πΎ)) | |
4 | ishtpy.4 | . . . . 5 β’ (π β πΊ β (π½ Cn πΎ)) | |
5 | 2, 3, 4 | ishtpy 24818 | . . . 4 β’ (π β (π» β (πΉ(π½ Htpy πΎ)πΊ) β (π» β ((π½ Γt II) Cn πΎ) β§ βπ β π ((π π»0) = (πΉβπ ) β§ (π π»1) = (πΊβπ ))))) |
6 | 1, 5 | mpbid 231 | . . 3 β’ (π β (π» β ((π½ Γt II) Cn πΎ) β§ βπ β π ((π π»0) = (πΉβπ ) β§ (π π»1) = (πΊβπ )))) |
7 | 6 | simprd 495 | . 2 β’ (π β βπ β π ((π π»0) = (πΉβπ ) β§ (π π»1) = (πΊβπ ))) |
8 | oveq1 7419 | . . . . 5 β’ (π = π΄ β (π π»0) = (π΄π»0)) | |
9 | fveq2 6891 | . . . . 5 β’ (π = π΄ β (πΉβπ ) = (πΉβπ΄)) | |
10 | 8, 9 | eqeq12d 2747 | . . . 4 β’ (π = π΄ β ((π π»0) = (πΉβπ ) β (π΄π»0) = (πΉβπ΄))) |
11 | oveq1 7419 | . . . . 5 β’ (π = π΄ β (π π»1) = (π΄π»1)) | |
12 | fveq2 6891 | . . . . 5 β’ (π = π΄ β (πΊβπ ) = (πΊβπ΄)) | |
13 | 11, 12 | eqeq12d 2747 | . . . 4 β’ (π = π΄ β ((π π»1) = (πΊβπ ) β (π΄π»1) = (πΊβπ΄))) |
14 | 10, 13 | anbi12d 630 | . . 3 β’ (π = π΄ β (((π π»0) = (πΉβπ ) β§ (π π»1) = (πΊβπ )) β ((π΄π»0) = (πΉβπ΄) β§ (π΄π»1) = (πΊβπ΄)))) |
15 | 14 | rspccva 3611 | . 2 β’ ((βπ β π ((π π»0) = (πΉβπ ) β§ (π π»1) = (πΊβπ )) β§ π΄ β π) β ((π΄π»0) = (πΉβπ΄) β§ (π΄π»1) = (πΊβπ΄))) |
16 | 7, 15 | sylan 579 | 1 β’ ((π β§ π΄ β π) β ((π΄π»0) = (πΉβπ΄) β§ (π΄π»1) = (πΊβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βcfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 TopOnctopon 22732 Cn ccn 23048 Γt ctx 23384 IIcii 24715 Htpy chtpy 24813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8828 df-top 22716 df-topon 22733 df-cn 23051 df-htpy 24816 |
This theorem is referenced by: htpycom 24822 htpyco1 24824 htpyco2 24825 htpycc 24826 phtpy01 24831 pcohtpylem 24866 txsconnlem 34695 cvmliftphtlem 34772 |
Copyright terms: Public domain | W3C validator |