| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > htpyi | Structured version Visualization version GIF version | ||
| Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| htpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
| Ref | Expression |
|---|---|
| htpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | |
| 2 | ishtpy.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | ishtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 4 | ishtpy.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 5 | 2, 3, 4 | ishtpy 24899 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
| 6 | 1, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
| 7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
| 8 | oveq1 7359 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻0) = (𝐴𝐻0)) | |
| 9 | fveq2 6828 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐹‘𝑠) = (𝐹‘𝐴)) | |
| 10 | 8, 9 | eqeq12d 2749 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻0) = (𝐹‘𝑠) ↔ (𝐴𝐻0) = (𝐹‘𝐴))) |
| 11 | oveq1 7359 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝑠𝐻1) = (𝐴𝐻1)) | |
| 12 | fveq2 6828 | . . . . 5 ⊢ (𝑠 = 𝐴 → (𝐺‘𝑠) = (𝐺‘𝐴)) | |
| 13 | 11, 12 | eqeq12d 2749 | . . . 4 ⊢ (𝑠 = 𝐴 → ((𝑠𝐻1) = (𝐺‘𝑠) ↔ (𝐴𝐻1) = (𝐺‘𝐴))) |
| 14 | 10, 13 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝐴 → (((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ↔ ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴)))) |
| 15 | 14 | rspccva 3572 | . 2 ⊢ ((∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)) ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
| 16 | 7, 15 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 TopOnctopon 22826 Cn ccn 23140 ×t ctx 23476 IIcii 24796 Htpy chtpy 24894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-top 22810 df-topon 22827 df-cn 23143 df-htpy 24897 |
| This theorem is referenced by: htpycom 24903 htpyco1 24905 htpyco2 24906 htpycc 24907 phtpy01 24912 pcohtpylem 24947 txsconnlem 35305 cvmliftphtlem 35382 |
| Copyright terms: Public domain | W3C validator |