MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyi Structured version   Visualization version   GIF version

Theorem htpyi 24820
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
ishtpy.3 (πœ‘ β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (πœ‘ β†’ 𝐺 ∈ (𝐽 Cn 𝐾))
htpyi.1 (πœ‘ β†’ 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyi ((πœ‘ ∧ 𝐴 ∈ 𝑋) β†’ ((𝐴𝐻0) = (πΉβ€˜π΄) ∧ (𝐴𝐻1) = (πΊβ€˜π΄)))

Proof of Theorem htpyi
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyi.1 . . . 4 (πœ‘ β†’ 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
2 ishtpy.1 . . . . 5 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 ishtpy.3 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
4 ishtpy.4 . . . . 5 (πœ‘ β†’ 𝐺 ∈ (𝐽 Cn 𝐾))
52, 3, 4ishtpy 24818 . . . 4 (πœ‘ β†’ (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 Γ—t II) Cn 𝐾) ∧ βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )))))
61, 5mpbid 231 . . 3 (πœ‘ β†’ (𝐻 ∈ ((𝐽 Γ—t II) Cn 𝐾) ∧ βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ ))))
76simprd 495 . 2 (πœ‘ β†’ βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )))
8 oveq1 7419 . . . . 5 (𝑠 = 𝐴 β†’ (𝑠𝐻0) = (𝐴𝐻0))
9 fveq2 6891 . . . . 5 (𝑠 = 𝐴 β†’ (πΉβ€˜π‘ ) = (πΉβ€˜π΄))
108, 9eqeq12d 2747 . . . 4 (𝑠 = 𝐴 β†’ ((𝑠𝐻0) = (πΉβ€˜π‘ ) ↔ (𝐴𝐻0) = (πΉβ€˜π΄)))
11 oveq1 7419 . . . . 5 (𝑠 = 𝐴 β†’ (𝑠𝐻1) = (𝐴𝐻1))
12 fveq2 6891 . . . . 5 (𝑠 = 𝐴 β†’ (πΊβ€˜π‘ ) = (πΊβ€˜π΄))
1311, 12eqeq12d 2747 . . . 4 (𝑠 = 𝐴 β†’ ((𝑠𝐻1) = (πΊβ€˜π‘ ) ↔ (𝐴𝐻1) = (πΊβ€˜π΄)))
1410, 13anbi12d 630 . . 3 (𝑠 = 𝐴 β†’ (((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )) ↔ ((𝐴𝐻0) = (πΉβ€˜π΄) ∧ (𝐴𝐻1) = (πΊβ€˜π΄))))
1514rspccva 3611 . 2 ((βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )) ∧ 𝐴 ∈ 𝑋) β†’ ((𝐴𝐻0) = (πΉβ€˜π΄) ∧ (𝐴𝐻1) = (πΊβ€˜π΄)))
167, 15sylan 579 1 ((πœ‘ ∧ 𝐴 ∈ 𝑋) β†’ ((𝐴𝐻0) = (πΉβ€˜π΄) ∧ (𝐴𝐻1) = (πΊβ€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  β€˜cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117  TopOnctopon 22732   Cn ccn 23048   Γ—t ctx 23384  IIcii 24715   Htpy chtpy 24813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-top 22716  df-topon 22733  df-cn 23051  df-htpy 24816
This theorem is referenced by:  htpycom  24822  htpyco1  24824  htpyco2  24825  htpycc  24826  phtpy01  24831  pcohtpylem  24866  txsconnlem  34695  cvmliftphtlem  34772
  Copyright terms: Public domain W3C validator