MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyi Structured version   Visualization version   GIF version

Theorem htpyi 24889
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyi.1 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyi ((𝜑𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))

Proof of Theorem htpyi
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyi.1 . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
2 ishtpy.1 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 ishtpy.3 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 ishtpy.4 . . . . 5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
52, 3, 4ishtpy 24887 . . . 4 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
61, 5mpbid 232 . . 3 (𝜑 → (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
76simprd 495 . 2 (𝜑 → ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
8 oveq1 7360 . . . . 5 (𝑠 = 𝐴 → (𝑠𝐻0) = (𝐴𝐻0))
9 fveq2 6826 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
108, 9eqeq12d 2745 . . . 4 (𝑠 = 𝐴 → ((𝑠𝐻0) = (𝐹𝑠) ↔ (𝐴𝐻0) = (𝐹𝐴)))
11 oveq1 7360 . . . . 5 (𝑠 = 𝐴 → (𝑠𝐻1) = (𝐴𝐻1))
12 fveq2 6826 . . . . 5 (𝑠 = 𝐴 → (𝐺𝑠) = (𝐺𝐴))
1311, 12eqeq12d 2745 . . . 4 (𝑠 = 𝐴 → ((𝑠𝐻1) = (𝐺𝑠) ↔ (𝐴𝐻1) = (𝐺𝐴)))
1410, 13anbi12d 632 . . 3 (𝑠 = 𝐴 → (((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)) ↔ ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴))))
1514rspccva 3578 . 2 ((∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)) ∧ 𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))
167, 15sylan 580 1 ((𝜑𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  TopOnctopon 22813   Cn ccn 23127   ×t ctx 23463  IIcii 24784   Htpy chtpy 24882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-htpy 24885
This theorem is referenced by:  htpycom  24891  htpyco1  24893  htpyco2  24894  htpycc  24895  phtpy01  24900  pcohtpylem  24935  txsconnlem  35212  cvmliftphtlem  35289
  Copyright terms: Public domain W3C validator