MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyi Structured version   Visualization version   GIF version

Theorem htpyi 24909
Description: A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyi.1 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyi ((𝜑𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))

Proof of Theorem htpyi
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyi.1 . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
2 ishtpy.1 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 ishtpy.3 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 ishtpy.4 . . . . 5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
52, 3, 4ishtpy 24907 . . . 4 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
61, 5mpbid 232 . . 3 (𝜑 → (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
76simprd 495 . 2 (𝜑 → ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
8 oveq1 7406 . . . . 5 (𝑠 = 𝐴 → (𝑠𝐻0) = (𝐴𝐻0))
9 fveq2 6872 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
108, 9eqeq12d 2750 . . . 4 (𝑠 = 𝐴 → ((𝑠𝐻0) = (𝐹𝑠) ↔ (𝐴𝐻0) = (𝐹𝐴)))
11 oveq1 7406 . . . . 5 (𝑠 = 𝐴 → (𝑠𝐻1) = (𝐴𝐻1))
12 fveq2 6872 . . . . 5 (𝑠 = 𝐴 → (𝐺𝑠) = (𝐺𝐴))
1311, 12eqeq12d 2750 . . . 4 (𝑠 = 𝐴 → ((𝑠𝐻1) = (𝐺𝑠) ↔ (𝐴𝐻1) = (𝐺𝐴)))
1410, 13anbi12d 632 . . 3 (𝑠 = 𝐴 → (((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)) ↔ ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴))))
1514rspccva 3598 . 2 ((∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)) ∧ 𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))
167, 15sylan 580 1 ((𝜑𝐴𝑋) → ((𝐴𝐻0) = (𝐹𝐴) ∧ (𝐴𝐻1) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  cfv 6527  (class class class)co 7399  0cc0 11121  1c1 11122  TopOnctopon 22833   Cn ccn 23147   ×t ctx 23483  IIcii 24804   Htpy chtpy 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-map 8836  df-top 22817  df-topon 22834  df-cn 23150  df-htpy 24905
This theorem is referenced by:  htpycom  24911  htpyco1  24913  htpyco2  24914  htpycc  24915  phtpy01  24920  pcohtpylem  24955  txsconnlem  35183  cvmliftphtlem  35260
  Copyright terms: Public domain W3C validator