MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Visualization version   GIF version

Theorem htpycc 24124
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
htpycc.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpycc.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpycc.5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycc.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
htpycc.7 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
htpycc.8 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
Assertion
Ref Expression
htpycc (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpycc
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpycc.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpycc.6 . 2 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
4 htpycc.1 . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
5 iitopon 24023 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
7 eqid 2739 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
8 eqid 2739 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
9 eqid 2739 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
10 dfii2 24026 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
11 0red 10962 . . . . 5 (𝜑 → 0 ∈ ℝ)
12 1red 10960 . . . . 5 (𝜑 → 1 ∈ ℝ)
13 halfre 12170 . . . . . . 7 (1 / 2) ∈ ℝ
14 halfge0 12173 . . . . . . 7 0 ≤ (1 / 2)
15 1re 10959 . . . . . . . 8 1 ∈ ℝ
16 halflt1 12174 . . . . . . . 8 (1 / 2) < 1
1713, 15, 16ltleii 11081 . . . . . . 7 (1 / 2) ≤ 1
18 elicc01 13180 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
1913, 14, 17, 18mpbir3an 1339 . . . . . 6 (1 / 2) ∈ (0[,]1)
2019a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ (0[,]1))
21 htpycc.5 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
22 htpycc.7 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
231, 2, 21, 22htpyi 24118 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝐿0) = (𝐹𝑠) ∧ (𝑠𝐿1) = (𝐺𝑠)))
2423simprd 495 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝐺𝑠))
25 htpycc.8 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
261, 21, 3, 25htpyi 24118 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝑀0) = (𝐺𝑠) ∧ (𝑠𝑀1) = (𝐻𝑠)))
2726simpld 494 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝑀0) = (𝐺𝑠))
2824, 27eqtr4d 2782 . . . . . . . . 9 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝑠𝑀0))
2928ralrimiva 3109 . . . . . . . 8 (𝜑 → ∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0))
30 oveq1 7275 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝐿1) = (𝑥𝐿1))
31 oveq1 7275 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝑀0) = (𝑥𝑀0))
3230, 31eqeq12d 2755 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠𝐿1) = (𝑠𝑀0) ↔ (𝑥𝐿1) = (𝑥𝑀0)))
3332rspccva 3559 . . . . . . . 8 ((∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0) ∧ 𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3429, 33sylan 579 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3534adantrl 712 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿1) = (𝑥𝑀0))
36 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → 𝑦 = (1 / 2))
3736oveq2d 7284 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = (2 · (1 / 2)))
38 2cn 12031 . . . . . . . . 9 2 ∈ ℂ
39 2ne0 12060 . . . . . . . . 9 2 ≠ 0
4038, 39recidi 11689 . . . . . . . 8 (2 · (1 / 2)) = 1
4137, 40eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = 1)
4241oveq2d 7284 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝐿1))
4341oveq1d 7283 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = (1 − 1))
44 1m1e0 12028 . . . . . . . 8 (1 − 1) = 0
4543, 44eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = 0)
4645oveq2d 7284 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑥𝑀0))
4735, 42, 463eqtr4d 2789 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝑀((2 · 𝑦) − 1)))
48 retopon 23908 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
49 0re 10961 . . . . . . . . 9 0 ∈ ℝ
50 iccssre 13143 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
5149, 13, 50mp2an 688 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
52 resttopon 22293 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5348, 51, 52mp2an 688 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
5453a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5554, 1cnmpt2nd 22801 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐽))
5654, 1cnmpt1st 22800 . . . . . . 7 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
578iihalf1cn 24076 . . . . . . . 8 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
5857a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
59 oveq2 7276 . . . . . . 7 (𝑧 = 𝑦 → (2 · 𝑧) = (2 · 𝑦))
6054, 1, 56, 54, 58, 59cnmpt21 22803 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn II))
611, 2, 21htpycn 24117 . . . . . . 7 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
6261, 22sseldd 3926 . . . . . 6 (𝜑𝐿 ∈ ((𝐽 ×t II) Cn 𝐾))
6354, 1, 55, 60, 62cnmpt22f 22807 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (𝑥𝐿(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐾))
64 iccssre 13143 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
6513, 15, 64mp2an 688 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
66 resttopon 22293 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6748, 65, 66mp2an 688 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
6867a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6968, 1cnmpt2nd 22801 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐽))
7068, 1cnmpt1st 22800 . . . . . . 7 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
719iihalf2cn 24078 . . . . . . . 8 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
7271a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
7359oveq1d 7283 . . . . . . 7 (𝑧 = 𝑦 → ((2 · 𝑧) − 1) = ((2 · 𝑦) − 1))
7468, 1, 70, 68, 72, 73cnmpt21 22803 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn II))
751, 21, 3htpycn 24117 . . . . . . 7 (𝜑 → (𝐺(𝐽 Htpy 𝐾)𝐻) ⊆ ((𝐽 ×t II) Cn 𝐾))
7675, 25sseldd 3926 . . . . . 6 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
7768, 1, 69, 74, 76cnmpt22f 22807 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ (𝑥𝑀((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐾))
787, 8, 9, 10, 11, 12, 20, 1, 47, 63, 77cnmpopc 24072 . . . 4 (𝜑 → (𝑦 ∈ (0[,]1), 𝑥𝑋 ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((II ×t 𝐽) Cn 𝐾))
796, 1, 78cnmptcom 22810 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((𝐽 ×t II) Cn 𝐾))
804, 79eqeltrid 2844 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐾))
81 simpr 484 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
82 0elunit 13183 . . . 4 0 ∈ (0[,]1)
83 simpr 484 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
8483, 14eqbrtrdi 5117 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 ≤ (1 / 2))
8584iftrued 4472 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝐿(2 · 𝑦)))
86 simpl 482 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8783oveq2d 7284 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = (2 · 0))
88 2t0e0 12125 . . . . . . . 8 (2 · 0) = 0
8987, 88eqtrdi 2795 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = 0)
9086, 89oveq12d 7286 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐿(2 · 𝑦)) = (𝑠𝐿0))
9185, 90eqtrd 2779 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝐿0))
92 ovex 7301 . . . . 5 (𝑠𝐿0) ∈ V
9391, 4, 92ovmpoa 7419 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = (𝑠𝐿0))
9481, 82, 93sylancl 585 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝑠𝐿0))
9523simpld 494 . . 3 ((𝜑𝑠𝑋) → (𝑠𝐿0) = (𝐹𝑠))
9694, 95eqtrd 2779 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝐹𝑠))
97 1elunit 13184 . . . 4 1 ∈ (0[,]1)
9813, 15ltnlei 11079 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
9916, 98mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
100 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
101100breq1d 5088 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
10299, 101mtbiri 326 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ¬ 𝑦 ≤ (1 / 2))
103102iffalsed 4475 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝑀((2 · 𝑦) − 1)))
104 simpl 482 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
105100oveq2d 7284 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = (2 · 1))
106 2t1e2 12119 . . . . . . . . . 10 (2 · 1) = 2
107105, 106eqtrdi 2795 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = 2)
108107oveq1d 7283 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = (2 − 1))
109 2m1e1 12082 . . . . . . . 8 (2 − 1) = 1
110108, 109eqtrdi 2795 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = 1)
111104, 110oveq12d 7286 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑠𝑀1))
112103, 111eqtrd 2779 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝑀1))
113 ovex 7301 . . . . 5 (𝑠𝑀1) ∈ V
114112, 4, 113ovmpoa 7419 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = (𝑠𝑀1))
11581, 97, 114sylancl 585 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝑠𝑀1))
11626simprd 495 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑀1) = (𝐻𝑠))
117115, 116eqtrd 2779 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝐻𝑠))
1181, 2, 3, 80, 96, 117ishtpyd 24119 1 (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  wss 3891  ifcif 4464   class class class wbr 5078  cmpt 5161  ran crn 5589  cfv 6430  (class class class)co 7268  cmpo 7270  cr 10854  0cc0 10855  1c1 10856   · cmul 10860   < clt 10993  cle 10994  cmin 11188   / cdiv 11615  2c2 12011  (,)cioo 13061  [,]cicc 13064  t crest 17112  topGenctg 17129  TopOnctopon 22040   Cn ccn 22356   ×t ctx 22692  IIcii 24019   Htpy chtpy 24111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-icc 13068  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-cn 22359  df-cnp 22360  df-tx 22694  df-hmeo 22887  df-xms 23454  df-ms 23455  df-tms 23456  df-ii 24021  df-htpy 24114
This theorem is referenced by:  phtpycc  24135
  Copyright terms: Public domain W3C validator