MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Visualization version   GIF version

Theorem htpycc 23591
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
htpycc.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpycc.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpycc.5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycc.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
htpycc.7 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
htpycc.8 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
Assertion
Ref Expression
htpycc (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpycc
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpycc.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpycc.6 . 2 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
4 htpycc.1 . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
5 iitopon 23490 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
7 eqid 2824 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
8 eqid 2824 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
9 eqid 2824 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
10 dfii2 23493 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
11 0red 10642 . . . . 5 (𝜑 → 0 ∈ ℝ)
12 1red 10640 . . . . 5 (𝜑 → 1 ∈ ℝ)
13 halfre 11848 . . . . . . 7 (1 / 2) ∈ ℝ
14 halfge0 11851 . . . . . . 7 0 ≤ (1 / 2)
15 1re 10639 . . . . . . . 8 1 ∈ ℝ
16 halflt1 11852 . . . . . . . 8 (1 / 2) < 1
1713, 15, 16ltleii 10761 . . . . . . 7 (1 / 2) ≤ 1
18 elicc01 12853 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
1913, 14, 17, 18mpbir3an 1338 . . . . . 6 (1 / 2) ∈ (0[,]1)
2019a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ (0[,]1))
21 htpycc.5 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
22 htpycc.7 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
231, 2, 21, 22htpyi 23585 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝐿0) = (𝐹𝑠) ∧ (𝑠𝐿1) = (𝐺𝑠)))
2423simprd 499 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝐺𝑠))
25 htpycc.8 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
261, 21, 3, 25htpyi 23585 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝑀0) = (𝐺𝑠) ∧ (𝑠𝑀1) = (𝐻𝑠)))
2726simpld 498 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝑀0) = (𝐺𝑠))
2824, 27eqtr4d 2862 . . . . . . . . 9 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝑠𝑀0))
2928ralrimiva 3177 . . . . . . . 8 (𝜑 → ∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0))
30 oveq1 7156 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝐿1) = (𝑥𝐿1))
31 oveq1 7156 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝑀0) = (𝑥𝑀0))
3230, 31eqeq12d 2840 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠𝐿1) = (𝑠𝑀0) ↔ (𝑥𝐿1) = (𝑥𝑀0)))
3332rspccva 3608 . . . . . . . 8 ((∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0) ∧ 𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3429, 33sylan 583 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3534adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿1) = (𝑥𝑀0))
36 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → 𝑦 = (1 / 2))
3736oveq2d 7165 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = (2 · (1 / 2)))
38 2cn 11709 . . . . . . . . 9 2 ∈ ℂ
39 2ne0 11738 . . . . . . . . 9 2 ≠ 0
4038, 39recidi 11369 . . . . . . . 8 (2 · (1 / 2)) = 1
4137, 40syl6eq 2875 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = 1)
4241oveq2d 7165 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝐿1))
4341oveq1d 7164 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = (1 − 1))
44 1m1e0 11706 . . . . . . . 8 (1 − 1) = 0
4543, 44syl6eq 2875 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = 0)
4645oveq2d 7165 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑥𝑀0))
4735, 42, 463eqtr4d 2869 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝑀((2 · 𝑦) − 1)))
48 retopon 23375 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
49 0re 10641 . . . . . . . . 9 0 ∈ ℝ
50 iccssre 12816 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
5149, 13, 50mp2an 691 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
52 resttopon 21772 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5348, 51, 52mp2an 691 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
5453a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5554, 1cnmpt2nd 22280 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐽))
5654, 1cnmpt1st 22279 . . . . . . 7 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
578iihalf1cn 23543 . . . . . . . 8 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
5857a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
59 oveq2 7157 . . . . . . 7 (𝑧 = 𝑦 → (2 · 𝑧) = (2 · 𝑦))
6054, 1, 56, 54, 58, 59cnmpt21 22282 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn II))
611, 2, 21htpycn 23584 . . . . . . 7 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
6261, 22sseldd 3954 . . . . . 6 (𝜑𝐿 ∈ ((𝐽 ×t II) Cn 𝐾))
6354, 1, 55, 60, 62cnmpt22f 22286 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (𝑥𝐿(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐾))
64 iccssre 12816 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
6513, 15, 64mp2an 691 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
66 resttopon 21772 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6748, 65, 66mp2an 691 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
6867a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6968, 1cnmpt2nd 22280 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐽))
7068, 1cnmpt1st 22279 . . . . . . 7 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
719iihalf2cn 23545 . . . . . . . 8 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
7271a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
7359oveq1d 7164 . . . . . . 7 (𝑧 = 𝑦 → ((2 · 𝑧) − 1) = ((2 · 𝑦) − 1))
7468, 1, 70, 68, 72, 73cnmpt21 22282 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn II))
751, 21, 3htpycn 23584 . . . . . . 7 (𝜑 → (𝐺(𝐽 Htpy 𝐾)𝐻) ⊆ ((𝐽 ×t II) Cn 𝐾))
7675, 25sseldd 3954 . . . . . 6 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
7768, 1, 69, 74, 76cnmpt22f 22286 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ (𝑥𝑀((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐾))
787, 8, 9, 10, 11, 12, 20, 1, 47, 63, 77cnmpopc 23539 . . . 4 (𝜑 → (𝑦 ∈ (0[,]1), 𝑥𝑋 ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((II ×t 𝐽) Cn 𝐾))
796, 1, 78cnmptcom 22289 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((𝐽 ×t II) Cn 𝐾))
804, 79eqeltrid 2920 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐾))
81 simpr 488 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
82 0elunit 12856 . . . 4 0 ∈ (0[,]1)
83 simpr 488 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
8483, 14eqbrtrdi 5091 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 ≤ (1 / 2))
8584iftrued 4458 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝐿(2 · 𝑦)))
86 simpl 486 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8783oveq2d 7165 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = (2 · 0))
88 2t0e0 11803 . . . . . . . 8 (2 · 0) = 0
8987, 88syl6eq 2875 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = 0)
9086, 89oveq12d 7167 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐿(2 · 𝑦)) = (𝑠𝐿0))
9185, 90eqtrd 2859 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝐿0))
92 ovex 7182 . . . . 5 (𝑠𝐿0) ∈ V
9391, 4, 92ovmpoa 7298 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = (𝑠𝐿0))
9481, 82, 93sylancl 589 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝑠𝐿0))
9523simpld 498 . . 3 ((𝜑𝑠𝑋) → (𝑠𝐿0) = (𝐹𝑠))
9694, 95eqtrd 2859 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝐹𝑠))
97 1elunit 12857 . . . 4 1 ∈ (0[,]1)
9813, 15ltnlei 10759 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
9916, 98mpbi 233 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
100 simpr 488 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
101100breq1d 5062 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
10299, 101mtbiri 330 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ¬ 𝑦 ≤ (1 / 2))
103102iffalsed 4461 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝑀((2 · 𝑦) − 1)))
104 simpl 486 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
105100oveq2d 7165 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = (2 · 1))
106 2t1e2 11797 . . . . . . . . . 10 (2 · 1) = 2
107105, 106syl6eq 2875 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = 2)
108107oveq1d 7164 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = (2 − 1))
109 2m1e1 11760 . . . . . . . 8 (2 − 1) = 1
110108, 109syl6eq 2875 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = 1)
111104, 110oveq12d 7167 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑠𝑀1))
112103, 111eqtrd 2859 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝑀1))
113 ovex 7182 . . . . 5 (𝑠𝑀1) ∈ V
114112, 4, 113ovmpoa 7298 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = (𝑠𝑀1))
11581, 97, 114sylancl 589 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝑠𝑀1))
11626simprd 499 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑀1) = (𝐻𝑠))
117115, 116eqtrd 2859 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝐻𝑠))
1181, 2, 3, 80, 96, 117ishtpyd 23586 1 (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  wss 3919  ifcif 4450   class class class wbr 5052  cmpt 5132  ran crn 5543  cfv 6343  (class class class)co 7149  cmpo 7151  cr 10534  0cc0 10535  1c1 10536   · cmul 10540   < clt 10673  cle 10674  cmin 10868   / cdiv 11295  2c2 11689  (,)cioo 12735  [,]cicc 12738  t crest 16694  topGenctg 16711  TopOnctopon 21521   Cn ccn 21835   ×t ctx 22171  IIcii 23486   Htpy chtpy 23578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23581
This theorem is referenced by:  phtpycc  23602
  Copyright terms: Public domain W3C validator