MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Visualization version   GIF version

Theorem htpycc 24141
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
htpycc.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpycc.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpycc.5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycc.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
htpycc.7 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
htpycc.8 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
Assertion
Ref Expression
htpycc (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpycc
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpycc.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpycc.6 . 2 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
4 htpycc.1 . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
5 iitopon 24040 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
7 eqid 2740 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
8 eqid 2740 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
9 eqid 2740 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
10 dfii2 24043 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
11 0red 10979 . . . . 5 (𝜑 → 0 ∈ ℝ)
12 1red 10977 . . . . 5 (𝜑 → 1 ∈ ℝ)
13 halfre 12187 . . . . . . 7 (1 / 2) ∈ ℝ
14 halfge0 12190 . . . . . . 7 0 ≤ (1 / 2)
15 1re 10976 . . . . . . . 8 1 ∈ ℝ
16 halflt1 12191 . . . . . . . 8 (1 / 2) < 1
1713, 15, 16ltleii 11098 . . . . . . 7 (1 / 2) ≤ 1
18 elicc01 13197 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
1913, 14, 17, 18mpbir3an 1340 . . . . . 6 (1 / 2) ∈ (0[,]1)
2019a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ (0[,]1))
21 htpycc.5 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
22 htpycc.7 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
231, 2, 21, 22htpyi 24135 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝐿0) = (𝐹𝑠) ∧ (𝑠𝐿1) = (𝐺𝑠)))
2423simprd 496 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝐺𝑠))
25 htpycc.8 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
261, 21, 3, 25htpyi 24135 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝑀0) = (𝐺𝑠) ∧ (𝑠𝑀1) = (𝐻𝑠)))
2726simpld 495 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝑀0) = (𝐺𝑠))
2824, 27eqtr4d 2783 . . . . . . . . 9 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝑠𝑀0))
2928ralrimiva 3110 . . . . . . . 8 (𝜑 → ∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0))
30 oveq1 7278 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝐿1) = (𝑥𝐿1))
31 oveq1 7278 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝑀0) = (𝑥𝑀0))
3230, 31eqeq12d 2756 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠𝐿1) = (𝑠𝑀0) ↔ (𝑥𝐿1) = (𝑥𝑀0)))
3332rspccva 3560 . . . . . . . 8 ((∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0) ∧ 𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3429, 33sylan 580 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3534adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿1) = (𝑥𝑀0))
36 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → 𝑦 = (1 / 2))
3736oveq2d 7287 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = (2 · (1 / 2)))
38 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
39 2ne0 12077 . . . . . . . . 9 2 ≠ 0
4038, 39recidi 11706 . . . . . . . 8 (2 · (1 / 2)) = 1
4137, 40eqtrdi 2796 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = 1)
4241oveq2d 7287 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝐿1))
4341oveq1d 7286 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = (1 − 1))
44 1m1e0 12045 . . . . . . . 8 (1 − 1) = 0
4543, 44eqtrdi 2796 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = 0)
4645oveq2d 7287 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑥𝑀0))
4735, 42, 463eqtr4d 2790 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝑀((2 · 𝑦) − 1)))
48 retopon 23925 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
49 0re 10978 . . . . . . . . 9 0 ∈ ℝ
50 iccssre 13160 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
5149, 13, 50mp2an 689 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
52 resttopon 22310 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5348, 51, 52mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
5453a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5554, 1cnmpt2nd 22818 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐽))
5654, 1cnmpt1st 22817 . . . . . . 7 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
578iihalf1cn 24093 . . . . . . . 8 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
5857a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
59 oveq2 7279 . . . . . . 7 (𝑧 = 𝑦 → (2 · 𝑧) = (2 · 𝑦))
6054, 1, 56, 54, 58, 59cnmpt21 22820 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn II))
611, 2, 21htpycn 24134 . . . . . . 7 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
6261, 22sseldd 3927 . . . . . 6 (𝜑𝐿 ∈ ((𝐽 ×t II) Cn 𝐾))
6354, 1, 55, 60, 62cnmpt22f 22824 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (𝑥𝐿(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐾))
64 iccssre 13160 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
6513, 15, 64mp2an 689 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
66 resttopon 22310 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6748, 65, 66mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
6867a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6968, 1cnmpt2nd 22818 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐽))
7068, 1cnmpt1st 22817 . . . . . . 7 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
719iihalf2cn 24095 . . . . . . . 8 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
7271a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
7359oveq1d 7286 . . . . . . 7 (𝑧 = 𝑦 → ((2 · 𝑧) − 1) = ((2 · 𝑦) − 1))
7468, 1, 70, 68, 72, 73cnmpt21 22820 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn II))
751, 21, 3htpycn 24134 . . . . . . 7 (𝜑 → (𝐺(𝐽 Htpy 𝐾)𝐻) ⊆ ((𝐽 ×t II) Cn 𝐾))
7675, 25sseldd 3927 . . . . . 6 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
7768, 1, 69, 74, 76cnmpt22f 22824 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ (𝑥𝑀((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐾))
787, 8, 9, 10, 11, 12, 20, 1, 47, 63, 77cnmpopc 24089 . . . 4 (𝜑 → (𝑦 ∈ (0[,]1), 𝑥𝑋 ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((II ×t 𝐽) Cn 𝐾))
796, 1, 78cnmptcom 22827 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((𝐽 ×t II) Cn 𝐾))
804, 79eqeltrid 2845 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐾))
81 simpr 485 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
82 0elunit 13200 . . . 4 0 ∈ (0[,]1)
83 simpr 485 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
8483, 14eqbrtrdi 5118 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 ≤ (1 / 2))
8584iftrued 4473 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝐿(2 · 𝑦)))
86 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8783oveq2d 7287 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = (2 · 0))
88 2t0e0 12142 . . . . . . . 8 (2 · 0) = 0
8987, 88eqtrdi 2796 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = 0)
9086, 89oveq12d 7289 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐿(2 · 𝑦)) = (𝑠𝐿0))
9185, 90eqtrd 2780 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝐿0))
92 ovex 7304 . . . . 5 (𝑠𝐿0) ∈ V
9391, 4, 92ovmpoa 7422 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = (𝑠𝐿0))
9481, 82, 93sylancl 586 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝑠𝐿0))
9523simpld 495 . . 3 ((𝜑𝑠𝑋) → (𝑠𝐿0) = (𝐹𝑠))
9694, 95eqtrd 2780 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝐹𝑠))
97 1elunit 13201 . . . 4 1 ∈ (0[,]1)
9813, 15ltnlei 11096 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
9916, 98mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
100 simpr 485 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
101100breq1d 5089 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
10299, 101mtbiri 327 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ¬ 𝑦 ≤ (1 / 2))
103102iffalsed 4476 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝑀((2 · 𝑦) − 1)))
104 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
105100oveq2d 7287 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = (2 · 1))
106 2t1e2 12136 . . . . . . . . . 10 (2 · 1) = 2
107105, 106eqtrdi 2796 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = 2)
108107oveq1d 7286 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = (2 − 1))
109 2m1e1 12099 . . . . . . . 8 (2 − 1) = 1
110108, 109eqtrdi 2796 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = 1)
111104, 110oveq12d 7289 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑠𝑀1))
112103, 111eqtrd 2780 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝑀1))
113 ovex 7304 . . . . 5 (𝑠𝑀1) ∈ V
114112, 4, 113ovmpoa 7422 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = (𝑠𝑀1))
11581, 97, 114sylancl 586 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝑠𝑀1))
11626simprd 496 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑀1) = (𝐻𝑠))
117115, 116eqtrd 2780 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝐻𝑠))
1181, 2, 3, 80, 96, 117ishtpyd 24136 1 (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wss 3892  ifcif 4465   class class class wbr 5079  cmpt 5162  ran crn 5591  cfv 6432  (class class class)co 7271  cmpo 7273  cr 10871  0cc0 10872  1c1 10873   · cmul 10877   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  2c2 12028  (,)cioo 13078  [,]cicc 13081  t crest 17129  topGenctg 17146  TopOnctopon 22057   Cn ccn 22373   ×t ctx 22709  IIcii 24036   Htpy chtpy 24128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-cn 22376  df-cnp 22377  df-tx 22711  df-hmeo 22904  df-xms 23471  df-ms 23472  df-tms 23473  df-ii 24038  df-htpy 24131
This theorem is referenced by:  phtpycc  24152
  Copyright terms: Public domain W3C validator