Step | Hyp | Ref
| Expression |
1 | | htpycc.2 |
. 2
β’ (π β π½ β (TopOnβπ)) |
2 | | htpycc.4 |
. 2
β’ (π β πΉ β (π½ Cn πΎ)) |
3 | | htpycc.6 |
. 2
β’ (π β π» β (π½ Cn πΎ)) |
4 | | htpycc.1 |
. . 3
β’ π = (π₯ β π, π¦ β (0[,]1) β¦ if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1)))) |
5 | | iitopon 24620 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
6 | 5 | a1i 11 |
. . . 4
β’ (π β II β
(TopOnβ(0[,]1))) |
7 | | eqid 2731 |
. . . . 5
β’
(topGenβran (,)) = (topGenβran (,)) |
8 | | eqid 2731 |
. . . . 5
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) =
((topGenβran (,)) βΎt (0[,](1 / 2))) |
9 | | eqid 2731 |
. . . . 5
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) =
((topGenβran (,)) βΎt ((1 / 2)[,]1)) |
10 | | dfii2 24623 |
. . . . 5
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
11 | | 0red 11222 |
. . . . 5
β’ (π β 0 β
β) |
12 | | 1red 11220 |
. . . . 5
β’ (π β 1 β
β) |
13 | | halfre 12431 |
. . . . . . 7
β’ (1 / 2)
β β |
14 | | halfge0 12434 |
. . . . . . 7
β’ 0 β€ (1
/ 2) |
15 | | 1re 11219 |
. . . . . . . 8
β’ 1 β
β |
16 | | halflt1 12435 |
. . . . . . . 8
β’ (1 / 2)
< 1 |
17 | 13, 15, 16 | ltleii 11342 |
. . . . . . 7
β’ (1 / 2)
β€ 1 |
18 | | elicc01 13448 |
. . . . . . 7
β’ ((1 / 2)
β (0[,]1) β ((1 / 2) β β β§ 0 β€ (1 / 2) β§ (1 /
2) β€ 1)) |
19 | 13, 14, 17, 18 | mpbir3an 1340 |
. . . . . 6
β’ (1 / 2)
β (0[,]1) |
20 | 19 | a1i 11 |
. . . . 5
β’ (π β (1 / 2) β
(0[,]1)) |
21 | | htpycc.5 |
. . . . . . . . . . . 12
β’ (π β πΊ β (π½ Cn πΎ)) |
22 | | htpycc.7 |
. . . . . . . . . . . 12
β’ (π β πΏ β (πΉ(π½ Htpy πΎ)πΊ)) |
23 | 1, 2, 21, 22 | htpyi 24721 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β ((π πΏ0) = (πΉβπ ) β§ (π πΏ1) = (πΊβπ ))) |
24 | 23 | simprd 495 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (π πΏ1) = (πΊβπ )) |
25 | | htpycc.8 |
. . . . . . . . . . . 12
β’ (π β π β (πΊ(π½ Htpy πΎ)π»)) |
26 | 1, 21, 3, 25 | htpyi 24721 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β ((π π0) = (πΊβπ ) β§ (π π1) = (π»βπ ))) |
27 | 26 | simpld 494 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (π π0) = (πΊβπ )) |
28 | 24, 27 | eqtr4d 2774 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π πΏ1) = (π π0)) |
29 | 28 | ralrimiva 3145 |
. . . . . . . 8
β’ (π β βπ β π (π πΏ1) = (π π0)) |
30 | | oveq1 7419 |
. . . . . . . . . 10
β’ (π = π₯ β (π πΏ1) = (π₯πΏ1)) |
31 | | oveq1 7419 |
. . . . . . . . . 10
β’ (π = π₯ β (π π0) = (π₯π0)) |
32 | 30, 31 | eqeq12d 2747 |
. . . . . . . . 9
β’ (π = π₯ β ((π πΏ1) = (π π0) β (π₯πΏ1) = (π₯π0))) |
33 | 32 | rspccva 3611 |
. . . . . . . 8
β’
((βπ β
π (π πΏ1) = (π π0) β§ π₯ β π) β (π₯πΏ1) = (π₯π0)) |
34 | 29, 33 | sylan 579 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (π₯πΏ1) = (π₯π0)) |
35 | 34 | adantrl 713 |
. . . . . 6
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (π₯πΏ1) = (π₯π0)) |
36 | | simprl 768 |
. . . . . . . . 9
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β π¦ = (1 / 2)) |
37 | 36 | oveq2d 7428 |
. . . . . . . 8
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (2 Β· π¦) = (2 Β· (1 / 2))) |
38 | | 2cn 12292 |
. . . . . . . . 9
β’ 2 β
β |
39 | | 2ne0 12321 |
. . . . . . . . 9
β’ 2 β
0 |
40 | 38, 39 | recidi 11950 |
. . . . . . . 8
β’ (2
Β· (1 / 2)) = 1 |
41 | 37, 40 | eqtrdi 2787 |
. . . . . . 7
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (2 Β· π¦) = 1) |
42 | 41 | oveq2d 7428 |
. . . . . 6
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (π₯πΏ(2 Β· π¦)) = (π₯πΏ1)) |
43 | 41 | oveq1d 7427 |
. . . . . . . 8
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β ((2 Β· π¦) β 1) = (1 β
1)) |
44 | | 1m1e0 12289 |
. . . . . . . 8
β’ (1
β 1) = 0 |
45 | 43, 44 | eqtrdi 2787 |
. . . . . . 7
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β ((2 Β· π¦) β 1) = 0) |
46 | 45 | oveq2d 7428 |
. . . . . 6
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (π₯π((2 Β· π¦) β 1)) = (π₯π0)) |
47 | 35, 42, 46 | 3eqtr4d 2781 |
. . . . 5
β’ ((π β§ (π¦ = (1 / 2) β§ π₯ β π)) β (π₯πΏ(2 Β· π¦)) = (π₯π((2 Β· π¦) β 1))) |
48 | | retopon 24501 |
. . . . . . . 8
β’
(topGenβran (,)) β (TopOnββ) |
49 | | 0re 11221 |
. . . . . . . . 9
β’ 0 β
β |
50 | | iccssre 13411 |
. . . . . . . . 9
β’ ((0
β β β§ (1 / 2) β β) β (0[,](1 / 2)) β
β) |
51 | 49, 13, 50 | mp2an 689 |
. . . . . . . 8
β’ (0[,](1 /
2)) β β |
52 | | resttopon 22886 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ (0[,](1 /
2)) β β) β ((topGenβran (,)) βΎt (0[,](1
/ 2))) β (TopOnβ(0[,](1 / 2)))) |
53 | 48, 51, 52 | mp2an 689 |
. . . . . . 7
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) β
(TopOnβ(0[,](1 / 2))) |
54 | 53 | a1i 11 |
. . . . . 6
β’ (π β ((topGenβran (,))
βΎt (0[,](1 / 2))) β (TopOnβ(0[,](1 /
2)))) |
55 | 54, 1 | cnmpt2nd 23394 |
. . . . . 6
β’ (π β (π¦ β (0[,](1 / 2)), π₯ β π β¦ π₯) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt π½) Cn π½)) |
56 | 54, 1 | cnmpt1st 23393 |
. . . . . . 7
β’ (π β (π¦ β (0[,](1 / 2)), π₯ β π β¦ π¦) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt π½) Cn ((topGenβran (,))
βΎt (0[,](1 / 2))))) |
57 | 8 | iihalf1cn 24674 |
. . . . . . . 8
β’ (π§ β (0[,](1 / 2)) β¦ (2
Β· π§)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II) |
58 | 57 | a1i 11 |
. . . . . . 7
β’ (π β (π§ β (0[,](1 / 2)) β¦ (2 Β·
π§)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II)) |
59 | | oveq2 7420 |
. . . . . . 7
β’ (π§ = π¦ β (2 Β· π§) = (2 Β· π¦)) |
60 | 54, 1, 56, 54, 58, 59 | cnmpt21 23396 |
. . . . . 6
β’ (π β (π¦ β (0[,](1 / 2)), π₯ β π β¦ (2 Β· π¦)) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt π½) Cn II)) |
61 | 1, 2, 21 | htpycn 24720 |
. . . . . . 7
β’ (π β (πΉ(π½ Htpy πΎ)πΊ) β ((π½ Γt II) Cn πΎ)) |
62 | 61, 22 | sseldd 3983 |
. . . . . 6
β’ (π β πΏ β ((π½ Γt II) Cn πΎ)) |
63 | 54, 1, 55, 60, 62 | cnmpt22f 23400 |
. . . . 5
β’ (π β (π¦ β (0[,](1 / 2)), π₯ β π β¦ (π₯πΏ(2 Β· π¦))) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt π½) Cn πΎ)) |
64 | | iccssre 13411 |
. . . . . . . . 9
β’ (((1 / 2)
β β β§ 1 β β) β ((1 / 2)[,]1) β
β) |
65 | 13, 15, 64 | mp2an 689 |
. . . . . . . 8
β’ ((1 /
2)[,]1) β β |
66 | | resttopon 22886 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ ((1 /
2)[,]1) β β) β ((topGenβran (,)) βΎt ((1
/ 2)[,]1)) β (TopOnβ((1 / 2)[,]1))) |
67 | 48, 65, 66 | mp2an 689 |
. . . . . . 7
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) β
(TopOnβ((1 / 2)[,]1)) |
68 | 67 | a1i 11 |
. . . . . 6
β’ (π β ((topGenβran (,))
βΎt ((1 / 2)[,]1)) β (TopOnβ((1 /
2)[,]1))) |
69 | 68, 1 | cnmpt2nd 23394 |
. . . . . 6
β’ (π β (π¦ β ((1 / 2)[,]1), π₯ β π β¦ π₯) β ((((topGenβran (,))
βΎt ((1 / 2)[,]1)) Γt π½) Cn π½)) |
70 | 68, 1 | cnmpt1st 23393 |
. . . . . . 7
β’ (π β (π¦ β ((1 / 2)[,]1), π₯ β π β¦ π¦) β ((((topGenβran (,))
βΎt ((1 / 2)[,]1)) Γt π½) Cn ((topGenβran (,))
βΎt ((1 / 2)[,]1)))) |
71 | 9 | iihalf2cn 24677 |
. . . . . . . 8
β’ (π§ β ((1 / 2)[,]1) β¦
((2 Β· π§) β 1))
β (((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II) |
72 | 71 | a1i 11 |
. . . . . . 7
β’ (π β (π§ β ((1 / 2)[,]1) β¦ ((2 Β·
π§) β 1)) β
(((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II)) |
73 | 59 | oveq1d 7427 |
. . . . . . 7
β’ (π§ = π¦ β ((2 Β· π§) β 1) = ((2 Β· π¦) β 1)) |
74 | 68, 1, 70, 68, 72, 73 | cnmpt21 23396 |
. . . . . 6
β’ (π β (π¦ β ((1 / 2)[,]1), π₯ β π β¦ ((2 Β· π¦) β 1)) β ((((topGenβran
(,)) βΎt ((1 / 2)[,]1)) Γt π½) Cn II)) |
75 | 1, 21, 3 | htpycn 24720 |
. . . . . . 7
β’ (π β (πΊ(π½ Htpy πΎ)π») β ((π½ Γt II) Cn πΎ)) |
76 | 75, 25 | sseldd 3983 |
. . . . . 6
β’ (π β π β ((π½ Γt II) Cn πΎ)) |
77 | 68, 1, 69, 74, 76 | cnmpt22f 23400 |
. . . . 5
β’ (π β (π¦ β ((1 / 2)[,]1), π₯ β π β¦ (π₯π((2 Β· π¦) β 1))) β ((((topGenβran
(,)) βΎt ((1 / 2)[,]1)) Γt π½) Cn πΎ)) |
78 | 7, 8, 9, 10, 11, 12, 20, 1, 47, 63, 77 | cnmpopc 24670 |
. . . 4
β’ (π β (π¦ β (0[,]1), π₯ β π β¦ if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1)))) β ((II
Γt π½) Cn
πΎ)) |
79 | 6, 1, 78 | cnmptcom 23403 |
. . 3
β’ (π β (π₯ β π, π¦ β (0[,]1) β¦ if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1)))) β ((π½ Γt II) Cn πΎ)) |
80 | 4, 79 | eqeltrid 2836 |
. 2
β’ (π β π β ((π½ Γt II) Cn πΎ)) |
81 | | simpr 484 |
. . . 4
β’ ((π β§ π β π) β π β π) |
82 | | 0elunit 13451 |
. . . 4
β’ 0 β
(0[,]1) |
83 | | simpr 484 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 0) β π¦ = 0) |
84 | 83, 14 | eqbrtrdi 5187 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 0) β π¦ β€ (1 / 2)) |
85 | 84 | iftrued 4536 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = 0) β if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1))) = (π₯πΏ(2 Β· π¦))) |
86 | | simpl 482 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 0) β π₯ = π ) |
87 | 83 | oveq2d 7428 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 0) β (2 Β· π¦) = (2 Β· 0)) |
88 | | 2t0e0 12386 |
. . . . . . . 8
β’ (2
Β· 0) = 0 |
89 | 87, 88 | eqtrdi 2787 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 0) β (2 Β· π¦) = 0) |
90 | 86, 89 | oveq12d 7430 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = 0) β (π₯πΏ(2 Β· π¦)) = (π πΏ0)) |
91 | 85, 90 | eqtrd 2771 |
. . . . 5
β’ ((π₯ = π β§ π¦ = 0) β if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1))) = (π πΏ0)) |
92 | | ovex 7445 |
. . . . 5
β’ (π πΏ0) β V |
93 | 91, 4, 92 | ovmpoa 7566 |
. . . 4
β’ ((π β π β§ 0 β (0[,]1)) β (π π0) = (π πΏ0)) |
94 | 81, 82, 93 | sylancl 585 |
. . 3
β’ ((π β§ π β π) β (π π0) = (π πΏ0)) |
95 | 23 | simpld 494 |
. . 3
β’ ((π β§ π β π) β (π πΏ0) = (πΉβπ )) |
96 | 94, 95 | eqtrd 2771 |
. 2
β’ ((π β§ π β π) β (π π0) = (πΉβπ )) |
97 | | 1elunit 13452 |
. . . 4
β’ 1 β
(0[,]1) |
98 | 13, 15 | ltnlei 11340 |
. . . . . . . . 9
β’ ((1 / 2)
< 1 β Β¬ 1 β€ (1 / 2)) |
99 | 16, 98 | mpbi 229 |
. . . . . . . 8
β’ Β¬ 1
β€ (1 / 2) |
100 | | simpr 484 |
. . . . . . . . 9
β’ ((π₯ = π β§ π¦ = 1) β π¦ = 1) |
101 | 100 | breq1d 5158 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 1) β (π¦ β€ (1 / 2) β 1 β€ (1 /
2))) |
102 | 99, 101 | mtbiri 327 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 1) β Β¬ π¦ β€ (1 / 2)) |
103 | 102 | iffalsed 4539 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = 1) β if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1))) = (π₯π((2 Β· π¦) β 1))) |
104 | | simpl 482 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 1) β π₯ = π ) |
105 | 100 | oveq2d 7428 |
. . . . . . . . . 10
β’ ((π₯ = π β§ π¦ = 1) β (2 Β· π¦) = (2 Β· 1)) |
106 | | 2t1e2 12380 |
. . . . . . . . . 10
β’ (2
Β· 1) = 2 |
107 | 105, 106 | eqtrdi 2787 |
. . . . . . . . 9
β’ ((π₯ = π β§ π¦ = 1) β (2 Β· π¦) = 2) |
108 | 107 | oveq1d 7427 |
. . . . . . . 8
β’ ((π₯ = π β§ π¦ = 1) β ((2 Β· π¦) β 1) = (2 β
1)) |
109 | | 2m1e1 12343 |
. . . . . . . 8
β’ (2
β 1) = 1 |
110 | 108, 109 | eqtrdi 2787 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = 1) β ((2 Β· π¦) β 1) = 1) |
111 | 104, 110 | oveq12d 7430 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = 1) β (π₯π((2 Β· π¦) β 1)) = (π π1)) |
112 | 103, 111 | eqtrd 2771 |
. . . . 5
β’ ((π₯ = π β§ π¦ = 1) β if(π¦ β€ (1 / 2), (π₯πΏ(2 Β· π¦)), (π₯π((2 Β· π¦) β 1))) = (π π1)) |
113 | | ovex 7445 |
. . . . 5
β’ (π π1) β V |
114 | 112, 4, 113 | ovmpoa 7566 |
. . . 4
β’ ((π β π β§ 1 β (0[,]1)) β (π π1) = (π π1)) |
115 | 81, 97, 114 | sylancl 585 |
. . 3
β’ ((π β§ π β π) β (π π1) = (π π1)) |
116 | 26 | simprd 495 |
. . 3
β’ ((π β§ π β π) β (π π1) = (π»βπ )) |
117 | 115, 116 | eqtrd 2771 |
. 2
β’ ((π β§ π β π) β (π π1) = (π»βπ )) |
118 | 1, 2, 3, 80, 96, 117 | ishtpyd 24722 |
1
β’ (π β π β (πΉ(π½ Htpy πΎ)π»)) |