Step | Hyp | Ref
| Expression |
1 | | htpycc.2 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | htpycc.4 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
3 | | htpycc.6 |
. 2
⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) |
4 | | htpycc.1 |
. . 3
⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) |
5 | | iitopon 24040 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
7 | | eqid 2740 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
8 | | eqid 2740 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
9 | | eqid 2740 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
10 | | dfii2 24043 |
. . . . 5
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
11 | | 0red 10979 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
12 | | 1red 10977 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
13 | | halfre 12187 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
14 | | halfge0 12190 |
. . . . . . 7
⊢ 0 ≤ (1
/ 2) |
15 | | 1re 10976 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
16 | | halflt1 12191 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
17 | 13, 15, 16 | ltleii 11098 |
. . . . . . 7
⊢ (1 / 2)
≤ 1 |
18 | | elicc01 13197 |
. . . . . . 7
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
19 | 13, 14, 17, 18 | mpbir3an 1340 |
. . . . . 6
⊢ (1 / 2)
∈ (0[,]1) |
20 | 19 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
(0[,]1)) |
21 | | htpycc.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
22 | | htpycc.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
23 | 1, 2, 21, 22 | htpyi 24135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑠𝐿0) = (𝐹‘𝑠) ∧ (𝑠𝐿1) = (𝐺‘𝑠))) |
24 | 23 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐿1) = (𝐺‘𝑠)) |
25 | | htpycc.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻)) |
26 | 1, 21, 3, 25 | htpyi 24135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑠𝑀0) = (𝐺‘𝑠) ∧ (𝑠𝑀1) = (𝐻‘𝑠))) |
27 | 26 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑀0) = (𝐺‘𝑠)) |
28 | 24, 27 | eqtr4d 2783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐿1) = (𝑠𝑀0)) |
29 | 28 | ralrimiva 3110 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ 𝑋 (𝑠𝐿1) = (𝑠𝑀0)) |
30 | | oveq1 7278 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑥 → (𝑠𝐿1) = (𝑥𝐿1)) |
31 | | oveq1 7278 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑥 → (𝑠𝑀0) = (𝑥𝑀0)) |
32 | 30, 31 | eqeq12d 2756 |
. . . . . . . . 9
⊢ (𝑠 = 𝑥 → ((𝑠𝐿1) = (𝑠𝑀0) ↔ (𝑥𝐿1) = (𝑥𝑀0))) |
33 | 32 | rspccva 3560 |
. . . . . . . 8
⊢
((∀𝑠 ∈
𝑋 (𝑠𝐿1) = (𝑠𝑀0) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐿1) = (𝑥𝑀0)) |
34 | 29, 33 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐿1) = (𝑥𝑀0)) |
35 | 34 | adantrl 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (𝑥𝐿1) = (𝑥𝑀0)) |
36 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → 𝑦 = (1 / 2)) |
37 | 36 | oveq2d 7287 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (2 · 𝑦) = (2 · (1 / 2))) |
38 | | 2cn 12048 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
39 | | 2ne0 12077 |
. . . . . . . . 9
⊢ 2 ≠
0 |
40 | 38, 39 | recidi 11706 |
. . . . . . . 8
⊢ (2
· (1 / 2)) = 1 |
41 | 37, 40 | eqtrdi 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (2 · 𝑦) = 1) |
42 | 41 | oveq2d 7287 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝐿1)) |
43 | 41 | oveq1d 7286 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → ((2 · 𝑦) − 1) = (1 −
1)) |
44 | | 1m1e0 12045 |
. . . . . . . 8
⊢ (1
− 1) = 0 |
45 | 43, 44 | eqtrdi 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → ((2 · 𝑦) − 1) = 0) |
46 | 45 | oveq2d 7287 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑥𝑀0)) |
47 | 35, 42, 46 | 3eqtr4d 2790 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥 ∈ 𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝑀((2 · 𝑦) − 1))) |
48 | | retopon 23925 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
49 | | 0re 10978 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
50 | | iccssre 13160 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
51 | 49, 13, 50 | mp2an 689 |
. . . . . . . 8
⊢ (0[,](1 /
2)) ⊆ ℝ |
52 | | resttopon 22310 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
53 | 48, 51, 52 | mp2an 689 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
55 | 54, 1 | cnmpt2nd 22818 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐽)) |
56 | 54, 1 | cnmpt1st 22817 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥 ∈ 𝑋 ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t 𝐽) Cn ((topGen‘ran (,))
↾t (0[,](1 / 2))))) |
57 | 8 | iihalf1cn 24093 |
. . . . . . . 8
⊢ (𝑧 ∈ (0[,](1 / 2)) ↦ (2
· 𝑧)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
58 | 57 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑧)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
59 | | oveq2 7279 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (2 · 𝑧) = (2 · 𝑦)) |
60 | 54, 1, 56, 54, 58, 59 | cnmpt21 22820 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥 ∈ 𝑋 ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t 𝐽) Cn II)) |
61 | 1, 2, 21 | htpycn 24134 |
. . . . . . 7
⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
62 | 61, 22 | sseldd 3927 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ((𝐽 ×t II) Cn 𝐾)) |
63 | 54, 1, 55, 60, 62 | cnmpt22f 22824 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥 ∈ 𝑋 ↦ (𝑥𝐿(2 · 𝑦))) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐾)) |
64 | | iccssre 13160 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
65 | 13, 15, 64 | mp2an 689 |
. . . . . . . 8
⊢ ((1 /
2)[,]1) ⊆ ℝ |
66 | | resttopon 22310 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
67 | 48, 65, 66 | mp2an 689 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
68 | 67 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
69 | 68, 1 | cnmpt2nd 22818 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐽)) |
70 | 68, 1 | cnmpt1st 22817 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥 ∈ 𝑋 ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t 𝐽) Cn ((topGen‘ran (,))
↾t ((1 / 2)[,]1)))) |
71 | 9 | iihalf2cn 24095 |
. . . . . . . 8
⊢ (𝑧 ∈ ((1 / 2)[,]1) ↦
((2 · 𝑧) − 1))
∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II) |
72 | 71 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 ·
𝑧) − 1)) ∈
(((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II)) |
73 | 59 | oveq1d 7286 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((2 · 𝑧) − 1) = ((2 · 𝑦) − 1)) |
74 | 68, 1, 70, 68, 72, 73 | cnmpt21 22820 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥 ∈ 𝑋 ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran
(,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn II)) |
75 | 1, 21, 3 | htpycn 24134 |
. . . . . . 7
⊢ (𝜑 → (𝐺(𝐽 Htpy 𝐾)𝐻) ⊆ ((𝐽 ×t II) Cn 𝐾)) |
76 | 75, 25 | sseldd 3927 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ((𝐽 ×t II) Cn 𝐾)) |
77 | 68, 1, 69, 74, 76 | cnmpt22f 22824 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥 ∈ 𝑋 ↦ (𝑥𝑀((2 · 𝑦) − 1))) ∈ ((((topGen‘ran
(,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐾)) |
78 | 7, 8, 9, 10, 11, 12, 20, 1, 47, 63, 77 | cnmpopc 24089 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (0[,]1), 𝑥 ∈ 𝑋 ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((II
×t 𝐽) Cn
𝐾)) |
79 | 6, 1, 78 | cnmptcom 22827 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((𝐽 ×t II) Cn 𝐾)) |
80 | 4, 79 | eqeltrid 2845 |
. 2
⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐾)) |
81 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) |
82 | | 0elunit 13200 |
. . . 4
⊢ 0 ∈
(0[,]1) |
83 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 𝑦 = 0) |
84 | 83, 14 | eqbrtrdi 5118 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 𝑦 ≤ (1 / 2)) |
85 | 84 | iftrued 4473 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝐿(2 · 𝑦))) |
86 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 𝑥 = 𝑠) |
87 | 83 | oveq2d 7287 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (2 · 𝑦) = (2 · 0)) |
88 | | 2t0e0 12142 |
. . . . . . . 8
⊢ (2
· 0) = 0 |
89 | 87, 88 | eqtrdi 2796 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (2 · 𝑦) = 0) |
90 | 86, 89 | oveq12d 7289 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (𝑥𝐿(2 · 𝑦)) = (𝑠𝐿0)) |
91 | 85, 90 | eqtrd 2780 |
. . . . 5
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝐿0)) |
92 | | ovex 7304 |
. . . . 5
⊢ (𝑠𝐿0) ∈ V |
93 | 91, 4, 92 | ovmpoa 7422 |
. . . 4
⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = (𝑠𝐿0)) |
94 | 81, 82, 93 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = (𝑠𝐿0)) |
95 | 23 | simpld 495 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐿0) = (𝐹‘𝑠)) |
96 | 94, 95 | eqtrd 2780 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = (𝐹‘𝑠)) |
97 | | 1elunit 13201 |
. . . 4
⊢ 1 ∈
(0[,]1) |
98 | 13, 15 | ltnlei 11096 |
. . . . . . . . 9
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
99 | 16, 98 | mpbi 229 |
. . . . . . . 8
⊢ ¬ 1
≤ (1 / 2) |
100 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → 𝑦 = 1) |
101 | 100 | breq1d 5089 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (𝑦 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
102 | 99, 101 | mtbiri 327 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ¬ 𝑦 ≤ (1 / 2)) |
103 | 102 | iffalsed 4476 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝑀((2 · 𝑦) − 1))) |
104 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → 𝑥 = 𝑠) |
105 | 100 | oveq2d 7287 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (2 · 𝑦) = (2 · 1)) |
106 | | 2t1e2 12136 |
. . . . . . . . . 10
⊢ (2
· 1) = 2 |
107 | 105, 106 | eqtrdi 2796 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (2 · 𝑦) = 2) |
108 | 107 | oveq1d 7286 |
. . . . . . . 8
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((2 · 𝑦) − 1) = (2 −
1)) |
109 | | 2m1e1 12099 |
. . . . . . . 8
⊢ (2
− 1) = 1 |
110 | 108, 109 | eqtrdi 2796 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((2 · 𝑦) − 1) = 1) |
111 | 104, 110 | oveq12d 7289 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑠𝑀1)) |
112 | 103, 111 | eqtrd 2780 |
. . . . 5
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝑀1)) |
113 | | ovex 7304 |
. . . . 5
⊢ (𝑠𝑀1) ∈ V |
114 | 112, 4, 113 | ovmpoa 7422 |
. . . 4
⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = (𝑠𝑀1)) |
115 | 81, 97, 114 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = (𝑠𝑀1)) |
116 | 26 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑀1) = (𝐻‘𝑠)) |
117 | 115, 116 | eqtrd 2780 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = (𝐻‘𝑠)) |
118 | 1, 2, 3, 80, 96, 117 | ishtpyd 24136 |
1
⊢ (𝜑 → 𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻)) |