MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Visualization version   GIF version

Theorem htpyco2 24996
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpyco2.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyco2.p (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
htpyco2.h (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))

Proof of Theorem htpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 23235 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 toptopon2 22911 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 217 . 2 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 htpyco2.p . . 3 (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
7 cnco 23261 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
81, 6, 7syl2anc 582 . 2 (𝜑 → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
9 htpyco2.g . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
10 cnco 23261 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
119, 6, 10syl2anc 582 . 2 (𝜑 → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
125, 1, 9htpycn 24990 . . . 4 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
13 htpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1412, 13sseldd 3980 . . 3 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
15 cnco 23261 . . 3 ((𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
1614, 6, 15syl2anc 582 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
175, 1, 9, 13htpyi 24991 . . . . 5 ((𝜑𝑠 𝐽) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
1817simpld 493 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻0) = (𝐹𝑠))
1918fveq2d 6905 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐹𝑠)))
20 iitopon 24890 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
21 txtopon 23586 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ II ∈ (TopOn‘(0[,]1))) → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
225, 20, 21sylancl 584 . . . . . 6 (𝜑 → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
23 cntop2 23236 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
241, 23syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
25 toptopon2 22911 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2624, 25sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 cnf2 23244 . . . . . 6 (((𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) → 𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
2822, 26, 14, 27syl3anc 1368 . . . . 5 (𝜑𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
29 simpr 483 . . . . . 6 ((𝜑𝑠 𝐽) → 𝑠 𝐽)
30 0elunit 13500 . . . . . 6 0 ∈ (0[,]1)
31 opelxpi 5719 . . . . . 6 ((𝑠 𝐽 ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
3229, 30, 31sylancl 584 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
33 fvco3 7001 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
3428, 32, 33syl2an2r 683 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
35 df-ov 7427 . . . 4 (𝑠(𝑃𝐻)0) = ((𝑃𝐻)‘⟨𝑠, 0⟩)
36 df-ov 7427 . . . . 5 (𝑠𝐻0) = (𝐻‘⟨𝑠, 0⟩)
3736fveq2i 6904 . . . 4 (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐻‘⟨𝑠, 0⟩))
3834, 35, 373eqtr4g 2791 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = (𝑃‘(𝑠𝐻0)))
39 eqid 2726 . . . . . 6 𝐽 = 𝐽
40 eqid 2726 . . . . . 6 𝐾 = 𝐾
4139, 40cnf 23241 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
421, 41syl 17 . . . 4 (𝜑𝐹: 𝐽 𝐾)
43 fvco3 7001 . . . 4 ((𝐹: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4442, 43sylan 578 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4519, 38, 443eqtr4d 2776 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = ((𝑃𝐹)‘𝑠))
4617simprd 494 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻1) = (𝐺𝑠))
4746fveq2d 6905 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐺𝑠)))
48 1elunit 13501 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5719 . . . . . 6 ((𝑠 𝐽 ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
5029, 48, 49sylancl 584 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
51 fvco3 7001 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
5228, 50, 51syl2an2r 683 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
53 df-ov 7427 . . . 4 (𝑠(𝑃𝐻)1) = ((𝑃𝐻)‘⟨𝑠, 1⟩)
54 df-ov 7427 . . . . 5 (𝑠𝐻1) = (𝐻‘⟨𝑠, 1⟩)
5554fveq2i 6904 . . . 4 (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐻‘⟨𝑠, 1⟩))
5652, 53, 553eqtr4g 2791 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = (𝑃‘(𝑠𝐻1)))
5739, 40cnf 23241 . . . . 5 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
589, 57syl 17 . . . 4 (𝜑𝐺: 𝐽 𝐾)
59 fvco3 7001 . . . 4 ((𝐺: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6058, 59sylan 578 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6147, 56, 603eqtr4d 2776 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = ((𝑃𝐺)‘𝑠))
625, 8, 11, 16, 45, 61ishtpyd 24992 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cop 4639   cuni 4913   × cxp 5680  ccom 5686  wf 6550  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159  [,]cicc 13381  Topctop 22886  TopOnctopon 22903   Cn ccn 23219   ×t ctx 23555  IIcii 24886   Htpy chtpy 24984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-icc 13385  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-top 22887  df-topon 22904  df-bases 22940  df-cn 23222  df-tx 23557  df-ii 24888  df-htpy 24987
This theorem is referenced by:  phtpyco2  25007
  Copyright terms: Public domain W3C validator