MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Visualization version   GIF version

Theorem htpyco2 25011
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpyco2.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyco2.p (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
htpyco2.h (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))

Proof of Theorem htpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 23248 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 toptopon2 22924 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 218 . 2 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 htpyco2.p . . 3 (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
7 cnco 23274 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
81, 6, 7syl2anc 584 . 2 (𝜑 → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
9 htpyco2.g . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
10 cnco 23274 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
119, 6, 10syl2anc 584 . 2 (𝜑 → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
125, 1, 9htpycn 25005 . . . 4 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
13 htpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1412, 13sseldd 3984 . . 3 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
15 cnco 23274 . . 3 ((𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
1614, 6, 15syl2anc 584 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
175, 1, 9, 13htpyi 25006 . . . . 5 ((𝜑𝑠 𝐽) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
1817simpld 494 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻0) = (𝐹𝑠))
1918fveq2d 6910 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐹𝑠)))
20 iitopon 24905 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
21 txtopon 23599 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ II ∈ (TopOn‘(0[,]1))) → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
225, 20, 21sylancl 586 . . . . . 6 (𝜑 → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
23 cntop2 23249 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
241, 23syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
25 toptopon2 22924 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2624, 25sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 cnf2 23257 . . . . . 6 (((𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) → 𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
2822, 26, 14, 27syl3anc 1373 . . . . 5 (𝜑𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
29 simpr 484 . . . . . 6 ((𝜑𝑠 𝐽) → 𝑠 𝐽)
30 0elunit 13509 . . . . . 6 0 ∈ (0[,]1)
31 opelxpi 5722 . . . . . 6 ((𝑠 𝐽 ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
3229, 30, 31sylancl 586 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
33 fvco3 7008 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
3428, 32, 33syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
35 df-ov 7434 . . . 4 (𝑠(𝑃𝐻)0) = ((𝑃𝐻)‘⟨𝑠, 0⟩)
36 df-ov 7434 . . . . 5 (𝑠𝐻0) = (𝐻‘⟨𝑠, 0⟩)
3736fveq2i 6909 . . . 4 (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐻‘⟨𝑠, 0⟩))
3834, 35, 373eqtr4g 2802 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = (𝑃‘(𝑠𝐻0)))
39 eqid 2737 . . . . . 6 𝐽 = 𝐽
40 eqid 2737 . . . . . 6 𝐾 = 𝐾
4139, 40cnf 23254 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
421, 41syl 17 . . . 4 (𝜑𝐹: 𝐽 𝐾)
43 fvco3 7008 . . . 4 ((𝐹: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4442, 43sylan 580 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4519, 38, 443eqtr4d 2787 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = ((𝑃𝐹)‘𝑠))
4617simprd 495 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻1) = (𝐺𝑠))
4746fveq2d 6910 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐺𝑠)))
48 1elunit 13510 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5722 . . . . . 6 ((𝑠 𝐽 ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
5029, 48, 49sylancl 586 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
51 fvco3 7008 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
5228, 50, 51syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
53 df-ov 7434 . . . 4 (𝑠(𝑃𝐻)1) = ((𝑃𝐻)‘⟨𝑠, 1⟩)
54 df-ov 7434 . . . . 5 (𝑠𝐻1) = (𝐻‘⟨𝑠, 1⟩)
5554fveq2i 6909 . . . 4 (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐻‘⟨𝑠, 1⟩))
5652, 53, 553eqtr4g 2802 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = (𝑃‘(𝑠𝐻1)))
5739, 40cnf 23254 . . . . 5 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
589, 57syl 17 . . . 4 (𝜑𝐺: 𝐽 𝐾)
59 fvco3 7008 . . . 4 ((𝐺: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6058, 59sylan 580 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6147, 56, 603eqtr4d 2787 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = ((𝑃𝐺)‘𝑠))
625, 8, 11, 16, 45, 61ishtpyd 25007 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632   cuni 4907   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  [,]cicc 13390  Topctop 22899  TopOnctopon 22916   Cn ccn 23232   ×t ctx 23568  IIcii 24901   Htpy chtpy 24999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-tx 23570  df-ii 24903  df-htpy 25002
This theorem is referenced by:  phtpyco2  25022
  Copyright terms: Public domain W3C validator