MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Visualization version   GIF version

Theorem htpyco2 24885
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpyco2.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyco2.p (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
htpyco2.h (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))

Proof of Theorem htpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 23134 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 toptopon2 22812 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 218 . 2 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 htpyco2.p . . 3 (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
7 cnco 23160 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
81, 6, 7syl2anc 584 . 2 (𝜑 → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
9 htpyco2.g . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
10 cnco 23160 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
119, 6, 10syl2anc 584 . 2 (𝜑 → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
125, 1, 9htpycn 24879 . . . 4 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
13 htpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1412, 13sseldd 3950 . . 3 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
15 cnco 23160 . . 3 ((𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
1614, 6, 15syl2anc 584 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
175, 1, 9, 13htpyi 24880 . . . . 5 ((𝜑𝑠 𝐽) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
1817simpld 494 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻0) = (𝐹𝑠))
1918fveq2d 6865 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐹𝑠)))
20 iitopon 24779 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
21 txtopon 23485 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ II ∈ (TopOn‘(0[,]1))) → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
225, 20, 21sylancl 586 . . . . . 6 (𝜑 → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
23 cntop2 23135 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
241, 23syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
25 toptopon2 22812 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2624, 25sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 cnf2 23143 . . . . . 6 (((𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) → 𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
2822, 26, 14, 27syl3anc 1373 . . . . 5 (𝜑𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
29 simpr 484 . . . . . 6 ((𝜑𝑠 𝐽) → 𝑠 𝐽)
30 0elunit 13437 . . . . . 6 0 ∈ (0[,]1)
31 opelxpi 5678 . . . . . 6 ((𝑠 𝐽 ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
3229, 30, 31sylancl 586 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
33 fvco3 6963 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
3428, 32, 33syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
35 df-ov 7393 . . . 4 (𝑠(𝑃𝐻)0) = ((𝑃𝐻)‘⟨𝑠, 0⟩)
36 df-ov 7393 . . . . 5 (𝑠𝐻0) = (𝐻‘⟨𝑠, 0⟩)
3736fveq2i 6864 . . . 4 (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐻‘⟨𝑠, 0⟩))
3834, 35, 373eqtr4g 2790 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = (𝑃‘(𝑠𝐻0)))
39 eqid 2730 . . . . . 6 𝐽 = 𝐽
40 eqid 2730 . . . . . 6 𝐾 = 𝐾
4139, 40cnf 23140 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
421, 41syl 17 . . . 4 (𝜑𝐹: 𝐽 𝐾)
43 fvco3 6963 . . . 4 ((𝐹: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4442, 43sylan 580 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4519, 38, 443eqtr4d 2775 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = ((𝑃𝐹)‘𝑠))
4617simprd 495 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻1) = (𝐺𝑠))
4746fveq2d 6865 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐺𝑠)))
48 1elunit 13438 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5678 . . . . . 6 ((𝑠 𝐽 ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
5029, 48, 49sylancl 586 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
51 fvco3 6963 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
5228, 50, 51syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
53 df-ov 7393 . . . 4 (𝑠(𝑃𝐻)1) = ((𝑃𝐻)‘⟨𝑠, 1⟩)
54 df-ov 7393 . . . . 5 (𝑠𝐻1) = (𝐻‘⟨𝑠, 1⟩)
5554fveq2i 6864 . . . 4 (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐻‘⟨𝑠, 1⟩))
5652, 53, 553eqtr4g 2790 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = (𝑃‘(𝑠𝐻1)))
5739, 40cnf 23140 . . . . 5 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
589, 57syl 17 . . . 4 (𝜑𝐺: 𝐽 𝐾)
59 fvco3 6963 . . . 4 ((𝐺: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6058, 59sylan 580 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6147, 56, 603eqtr4d 2775 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = ((𝑃𝐺)‘𝑠))
625, 8, 11, 16, 45, 61ishtpyd 24881 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598   cuni 4874   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  [,]cicc 13316  Topctop 22787  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  IIcii 24775   Htpy chtpy 24873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-tx 23456  df-ii 24777  df-htpy 24876
This theorem is referenced by:  phtpyco2  24896
  Copyright terms: Public domain W3C validator