MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Visualization version   GIF version

Theorem htpyco2 23876
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpyco2.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyco2.p (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
htpyco2.h (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))

Proof of Theorem htpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 22137 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 toptopon2 21815 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 221 . 2 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 htpyco2.p . . 3 (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
7 cnco 22163 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
81, 6, 7syl2anc 587 . 2 (𝜑 → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
9 htpyco2.g . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
10 cnco 22163 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
119, 6, 10syl2anc 587 . 2 (𝜑 → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
125, 1, 9htpycn 23870 . . . 4 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
13 htpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1412, 13sseldd 3902 . . 3 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
15 cnco 22163 . . 3 ((𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
1614, 6, 15syl2anc 587 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
175, 1, 9, 13htpyi 23871 . . . . 5 ((𝜑𝑠 𝐽) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
1817simpld 498 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻0) = (𝐹𝑠))
1918fveq2d 6721 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐹𝑠)))
20 iitopon 23776 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
21 txtopon 22488 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ II ∈ (TopOn‘(0[,]1))) → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
225, 20, 21sylancl 589 . . . . . 6 (𝜑 → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
23 cntop2 22138 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
241, 23syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
25 toptopon2 21815 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2624, 25sylib 221 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 cnf2 22146 . . . . . 6 (((𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) → 𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
2822, 26, 14, 27syl3anc 1373 . . . . 5 (𝜑𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
29 simpr 488 . . . . . 6 ((𝜑𝑠 𝐽) → 𝑠 𝐽)
30 0elunit 13057 . . . . . 6 0 ∈ (0[,]1)
31 opelxpi 5588 . . . . . 6 ((𝑠 𝐽 ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
3229, 30, 31sylancl 589 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
33 fvco3 6810 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
3428, 32, 33syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
35 df-ov 7216 . . . 4 (𝑠(𝑃𝐻)0) = ((𝑃𝐻)‘⟨𝑠, 0⟩)
36 df-ov 7216 . . . . 5 (𝑠𝐻0) = (𝐻‘⟨𝑠, 0⟩)
3736fveq2i 6720 . . . 4 (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐻‘⟨𝑠, 0⟩))
3834, 35, 373eqtr4g 2803 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = (𝑃‘(𝑠𝐻0)))
39 eqid 2737 . . . . . 6 𝐽 = 𝐽
40 eqid 2737 . . . . . 6 𝐾 = 𝐾
4139, 40cnf 22143 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
421, 41syl 17 . . . 4 (𝜑𝐹: 𝐽 𝐾)
43 fvco3 6810 . . . 4 ((𝐹: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4442, 43sylan 583 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4519, 38, 443eqtr4d 2787 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = ((𝑃𝐹)‘𝑠))
4617simprd 499 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻1) = (𝐺𝑠))
4746fveq2d 6721 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐺𝑠)))
48 1elunit 13058 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5588 . . . . . 6 ((𝑠 𝐽 ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
5029, 48, 49sylancl 589 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
51 fvco3 6810 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
5228, 50, 51syl2an2r 685 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
53 df-ov 7216 . . . 4 (𝑠(𝑃𝐻)1) = ((𝑃𝐻)‘⟨𝑠, 1⟩)
54 df-ov 7216 . . . . 5 (𝑠𝐻1) = (𝐻‘⟨𝑠, 1⟩)
5554fveq2i 6720 . . . 4 (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐻‘⟨𝑠, 1⟩))
5652, 53, 553eqtr4g 2803 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = (𝑃‘(𝑠𝐻1)))
5739, 40cnf 22143 . . . . 5 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
589, 57syl 17 . . . 4 (𝜑𝐺: 𝐽 𝐾)
59 fvco3 6810 . . . 4 ((𝐺: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6058, 59sylan 583 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6147, 56, 603eqtr4d 2787 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = ((𝑃𝐺)‘𝑠))
625, 8, 11, 16, 45, 61ishtpyd 23872 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cop 4547   cuni 4819   × cxp 5549  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730  [,]cicc 12938  Topctop 21790  TopOnctopon 21807   Cn ccn 22121   ×t ctx 22457  IIcii 23772   Htpy chtpy 23864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cn 22124  df-tx 22459  df-ii 23774  df-htpy 23867
This theorem is referenced by:  phtpyco2  23887
  Copyright terms: Public domain W3C validator