MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Structured version   Visualization version   GIF version

Theorem htpyco2 24048
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpyco2.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpyco2.p (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
htpyco2.h (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Assertion
Ref Expression
htpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))

Proof of Theorem htpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop1 22299 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 toptopon2 21975 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 217 . 2 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 htpyco2.p . . 3 (𝜑𝑃 ∈ (𝐾 Cn 𝐿))
7 cnco 22325 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
81, 6, 7syl2anc 583 . 2 (𝜑 → (𝑃𝐹) ∈ (𝐽 Cn 𝐿))
9 htpyco2.g . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
10 cnco 22325 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
119, 6, 10syl2anc 583 . 2 (𝜑 → (𝑃𝐺) ∈ (𝐽 Cn 𝐿))
125, 1, 9htpycn 24042 . . . 4 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
13 htpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
1412, 13sseldd 3918 . . 3 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
15 cnco 22325 . . 3 ((𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ 𝑃 ∈ (𝐾 Cn 𝐿)) → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
1614, 6, 15syl2anc 583 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝐽 ×t II) Cn 𝐿))
175, 1, 9, 13htpyi 24043 . . . . 5 ((𝜑𝑠 𝐽) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
1817simpld 494 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻0) = (𝐹𝑠))
1918fveq2d 6760 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐹𝑠)))
20 iitopon 23948 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
21 txtopon 22650 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ II ∈ (TopOn‘(0[,]1))) → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
225, 20, 21sylancl 585 . . . . . 6 (𝜑 → (𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))))
23 cntop2 22300 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
241, 23syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
25 toptopon2 21975 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2624, 25sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 cnf2 22308 . . . . . 6 (((𝐽 ×t II) ∈ (TopOn‘( 𝐽 × (0[,]1))) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) → 𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
2822, 26, 14, 27syl3anc 1369 . . . . 5 (𝜑𝐻:( 𝐽 × (0[,]1))⟶ 𝐾)
29 simpr 484 . . . . . 6 ((𝜑𝑠 𝐽) → 𝑠 𝐽)
30 0elunit 13130 . . . . . 6 0 ∈ (0[,]1)
31 opelxpi 5617 . . . . . 6 ((𝑠 𝐽 ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
3229, 30, 31sylancl 585 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1)))
33 fvco3 6849 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 0⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
3428, 32, 33syl2an2r 681 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 0⟩) = (𝑃‘(𝐻‘⟨𝑠, 0⟩)))
35 df-ov 7258 . . . 4 (𝑠(𝑃𝐻)0) = ((𝑃𝐻)‘⟨𝑠, 0⟩)
36 df-ov 7258 . . . . 5 (𝑠𝐻0) = (𝐻‘⟨𝑠, 0⟩)
3736fveq2i 6759 . . . 4 (𝑃‘(𝑠𝐻0)) = (𝑃‘(𝐻‘⟨𝑠, 0⟩))
3834, 35, 373eqtr4g 2804 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = (𝑃‘(𝑠𝐻0)))
39 eqid 2738 . . . . . 6 𝐽 = 𝐽
40 eqid 2738 . . . . . 6 𝐾 = 𝐾
4139, 40cnf 22305 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
421, 41syl 17 . . . 4 (𝜑𝐹: 𝐽 𝐾)
43 fvco3 6849 . . . 4 ((𝐹: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4442, 43sylan 579 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐹)‘𝑠) = (𝑃‘(𝐹𝑠)))
4519, 38, 443eqtr4d 2788 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)0) = ((𝑃𝐹)‘𝑠))
4617simprd 495 . . . 4 ((𝜑𝑠 𝐽) → (𝑠𝐻1) = (𝐺𝑠))
4746fveq2d 6760 . . 3 ((𝜑𝑠 𝐽) → (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐺𝑠)))
48 1elunit 13131 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5617 . . . . . 6 ((𝑠 𝐽 ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
5029, 48, 49sylancl 585 . . . . 5 ((𝜑𝑠 𝐽) → ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1)))
51 fvco3 6849 . . . . 5 ((𝐻:( 𝐽 × (0[,]1))⟶ 𝐾 ∧ ⟨𝑠, 1⟩ ∈ ( 𝐽 × (0[,]1))) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
5228, 50, 51syl2an2r 681 . . . 4 ((𝜑𝑠 𝐽) → ((𝑃𝐻)‘⟨𝑠, 1⟩) = (𝑃‘(𝐻‘⟨𝑠, 1⟩)))
53 df-ov 7258 . . . 4 (𝑠(𝑃𝐻)1) = ((𝑃𝐻)‘⟨𝑠, 1⟩)
54 df-ov 7258 . . . . 5 (𝑠𝐻1) = (𝐻‘⟨𝑠, 1⟩)
5554fveq2i 6759 . . . 4 (𝑃‘(𝑠𝐻1)) = (𝑃‘(𝐻‘⟨𝑠, 1⟩))
5652, 53, 553eqtr4g 2804 . . 3 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = (𝑃‘(𝑠𝐻1)))
5739, 40cnf 22305 . . . . 5 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
589, 57syl 17 . . . 4 (𝜑𝐺: 𝐽 𝐾)
59 fvco3 6849 . . . 4 ((𝐺: 𝐽 𝐾𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6058, 59sylan 579 . . 3 ((𝜑𝑠 𝐽) → ((𝑃𝐺)‘𝑠) = (𝑃‘(𝐺𝑠)))
6147, 56, 603eqtr4d 2788 . 2 ((𝜑𝑠 𝐽) → (𝑠(𝑃𝐻)1) = ((𝑃𝐺)‘𝑠))
625, 8, 11, 16, 45, 61ishtpyd 24044 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(𝐽 Htpy 𝐿)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   cuni 4836   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  [,]cicc 13011  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  IIcii 23944   Htpy chtpy 24036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621  df-ii 23946  df-htpy 24039
This theorem is referenced by:  phtpyco2  24059
  Copyright terms: Public domain W3C validator