Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapevec2 | Structured version Visualization version GIF version |
Description: The inner product of the reference vector 𝐸 with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32, [ e , e ] ≠ 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.) |
Ref | Expression |
---|---|
hdmapevec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapevec.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapevec.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapevec.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapevec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapevec2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapevec2.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapevec2.i | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
hdmapevec2 | ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapevec.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapevec.e | . . . . 5 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
3 | hdmapevec.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
4 | hdmapevec.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
5 | hdmapevec.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | hdmapevec 39875 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
7 | hdmapevec2.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | eqid 2733 | . . . . 5 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
9 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
10 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
11 | eqid 2733 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
12 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
13 | hdmapevec2.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
14 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | eqid 2733 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
17 | 1, 15, 16, 7, 9, 12, 2, 5 | dvheveccl 39152 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})) |
18 | 1, 7, 8, 9, 10, 11, 12, 13, 14, 3, 5, 17 | hvmapval 39800 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))) |
19 | 6, 18 | eqtrd 2773 | . . 3 ⊢ (𝜑 → (𝑆‘𝐸) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))) |
20 | 19 | fveq1d 6794 | . 2 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = ((𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))‘𝐸)) |
21 | hdmapevec2.i | . . 3 ⊢ 1 = (1r‘𝑅) | |
22 | eqid 2733 | . . 3 ⊢ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸)))) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸)))) | |
23 | 1, 8, 7, 9, 10, 11, 12, 13, 14, 21, 5, 17, 22 | dochfl1 39516 | . 2 ⊢ (𝜑 → ((𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))‘𝐸) = 1 ) |
24 | 20, 23 | eqtrd 2773 | 1 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∃wrex 3068 {csn 4564 〈cop 4570 ↦ cmpt 5160 I cid 5490 ↾ cres 5593 ‘cfv 6447 ℩crio 7251 (class class class)co 7295 Basecbs 16940 +gcplusg 16990 Scalarcsca 16993 ·𝑠 cvsca 16994 0gc0g 17178 1rcur 19765 HLchlt 37390 LHypclh 38024 LTrncltrn 38141 DVecHcdvh 39118 ocHcoch 39387 HVMapchvm 39796 HDMapchdma 39832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-riotaBAD 36993 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-ot 4573 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-tpos 8062 df-undef 8109 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-0g 17180 df-mre 17323 df-mrc 17324 df-acs 17326 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-p1 18172 df-lat 18178 df-clat 18245 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-grp 18608 df-minusg 18609 df-sbg 18610 df-subg 18780 df-cntz 18951 df-oppg 18978 df-lsm 19269 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-dvr 19953 df-drng 20021 df-lmod 20153 df-lss 20222 df-lsp 20262 df-lvec 20393 df-lsatoms 37016 df-lshyp 37017 df-lcv 37059 df-lfl 37098 df-lkr 37126 df-ldual 37164 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-llines 37538 df-lplanes 37539 df-lvols 37540 df-lines 37541 df-psubsp 37543 df-pmap 37544 df-padd 37836 df-lhyp 38028 df-laut 38029 df-ldil 38144 df-ltrn 38145 df-trl 38199 df-tgrp 38783 df-tendo 38795 df-edring 38797 df-dveca 39043 df-disoa 39069 df-dvech 39119 df-dib 39179 df-dic 39213 df-dih 39269 df-doch 39388 df-djh 39435 df-lcdual 39627 df-mapd 39665 df-hvmap 39797 df-hdmap1 39833 df-hdmap 39834 |
This theorem is referenced by: hdmapinvlem3 39960 hdmapinvlem4 39961 hdmapglem7b 39968 |
Copyright terms: Public domain | W3C validator |