Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmod | Structured version Visualization version GIF version |
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltmod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltmod.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) |
Ref | Expression |
---|---|
ltmod | ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmod.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmod.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | 1, 2 | modcld 13645 | . . . . . . 7 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
4 | 1, 3 | resubcld 11453 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
5 | 1 | rexrd 11075 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
6 | icossre 13210 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) | |
7 | 4, 5, 6 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) |
8 | ltmod.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) | |
9 | 7, 8 | sseldd 3927 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
10 | 2 | rpred 12822 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
11 | 9, 2 | rerpdivcld 12853 | . . . . . . 7 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
12 | 11 | flcld 13568 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ) |
13 | 12 | zred 12476 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
14 | 10, 13 | remulcld 11055 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ) |
15 | 4 | rexrd 11075 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
16 | icoltub 43275 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴) | |
17 | 15, 5, 8, 16 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) |
18 | 9, 1, 14, 17 | ltsub1dd 11637 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
19 | icossicc 13218 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) | |
20 | 19, 8 | sselid 3924 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
21 | 1, 2, 20 | lefldiveq 43059 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
22 | 21 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵))) |
23 | 22 | oveq2d 7323 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵)))) |
24 | 23 | oveq2d 7323 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
25 | 18, 24 | breqtrd 5107 | . 2 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
26 | modval 13641 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) | |
27 | 9, 2, 26 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
28 | modval 13641 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
29 | 1, 2, 28 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
30 | 25, 27, 29 | 3brtr4d 5113 | 1 ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 · cmul 10926 ℝ*cxr 11058 < clt 11059 − cmin 11255 / cdiv 11682 ℝ+crp 12780 [,)cico 13131 [,]cicc 13132 ⌊cfl 13560 mod cmo 13639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-ico 13135 df-icc 13136 df-fl 13562 df-mod 13640 |
This theorem is referenced by: fouriersw 44001 |
Copyright terms: Public domain | W3C validator |