Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmod | Structured version Visualization version GIF version |
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltmod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltmod.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) |
Ref | Expression |
---|---|
ltmod | ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmod.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmod.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | 1, 2 | modcld 13576 | . . . . . . 7 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
4 | 1, 3 | resubcld 11386 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
5 | 1 | rexrd 11009 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
6 | icossre 13142 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) | |
7 | 4, 5, 6 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) |
8 | ltmod.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) | |
9 | 7, 8 | sseldd 3926 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
10 | 2 | rpred 12754 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
11 | 9, 2 | rerpdivcld 12785 | . . . . . . 7 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
12 | 11 | flcld 13499 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ) |
13 | 12 | zred 12408 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
14 | 10, 13 | remulcld 10989 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ) |
15 | 4 | rexrd 11009 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
16 | icoltub 43000 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴) | |
17 | 15, 5, 8, 16 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) |
18 | 9, 1, 14, 17 | ltsub1dd 11570 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
19 | icossicc 13150 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) | |
20 | 19, 8 | sselid 3923 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
21 | 1, 2, 20 | lefldiveq 42785 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
22 | 21 | eqcomd 2745 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵))) |
23 | 22 | oveq2d 7284 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵)))) |
24 | 23 | oveq2d 7284 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
25 | 18, 24 | breqtrd 5104 | . 2 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
26 | modval 13572 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) | |
27 | 9, 2, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
28 | modval 13572 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
29 | 1, 2, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
30 | 25, 27, 29 | 3brtr4d 5110 | 1 ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 · cmul 10860 ℝ*cxr 10992 < clt 10993 − cmin 11188 / cdiv 11615 ℝ+crp 12712 [,)cico 13063 [,]cicc 13064 ⌊cfl 13491 mod cmo 13570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-icc 13068 df-fl 13493 df-mod 13571 |
This theorem is referenced by: fouriersw 43726 |
Copyright terms: Public domain | W3C validator |