| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmod | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltmod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltmod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| ltmod.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) |
| Ref | Expression |
|---|---|
| ltmod | ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmod.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltmod.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | 1, 2 | modcld 13797 | . . . . . . 7 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
| 4 | 1, 3 | resubcld 11566 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
| 5 | 1 | rexrd 11184 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 6 | icossre 13349 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) |
| 8 | ltmod.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) | |
| 9 | 7, 8 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 10 | 2 | rpred 12955 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 11 | 9, 2 | rerpdivcld 12986 | . . . . . . 7 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
| 12 | 11 | flcld 13720 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ) |
| 13 | 12 | zred 12598 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
| 14 | 10, 13 | remulcld 11164 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ) |
| 15 | 4 | rexrd 11184 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
| 16 | icoltub 45490 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴) | |
| 17 | 15, 5, 8, 16 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) |
| 18 | 9, 1, 14, 17 | ltsub1dd 11750 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
| 19 | icossicc 13357 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) | |
| 20 | 19, 8 | sselid 3935 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
| 21 | 1, 2, 20 | lefldiveq 45274 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
| 22 | 21 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵))) |
| 23 | 22 | oveq2d 7369 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵)))) |
| 24 | 23 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 25 | 18, 24 | breqtrd 5121 | . 2 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 26 | modval 13793 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) | |
| 27 | 9, 2, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
| 28 | modval 13793 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 29 | 1, 2, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 30 | 25, 27, 29 | 3brtr4d 5127 | 1 ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 · cmul 11033 ℝ*cxr 11167 < clt 11168 − cmin 11365 / cdiv 11795 ℝ+crp 12911 [,)cico 13268 [,]cicc 13269 ⌊cfl 13712 mod cmo 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-ico 13272 df-icc 13273 df-fl 13714 df-mod 13792 |
| This theorem is referenced by: fouriersw 46213 |
| Copyright terms: Public domain | W3C validator |