![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmod | Structured version Visualization version GIF version |
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltmod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltmod.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) |
Ref | Expression |
---|---|
ltmod | ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmod.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmod.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | 1, 2 | modcld 13889 | . . . . . . 7 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
4 | 1, 3 | resubcld 11683 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
5 | 1 | rexrd 11305 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
6 | icossre 13453 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) | |
7 | 4, 5, 6 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) |
8 | ltmod.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) | |
9 | 7, 8 | sseldd 3979 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
10 | 2 | rpred 13064 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
11 | 9, 2 | rerpdivcld 13095 | . . . . . . 7 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
12 | 11 | flcld 13812 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ) |
13 | 12 | zred 12712 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
14 | 10, 13 | remulcld 11285 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ) |
15 | 4 | rexrd 11305 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
16 | icoltub 45162 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴) | |
17 | 15, 5, 8, 16 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) |
18 | 9, 1, 14, 17 | ltsub1dd 11867 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
19 | icossicc 13461 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) | |
20 | 19, 8 | sselid 3976 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
21 | 1, 2, 20 | lefldiveq 44943 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
22 | 21 | eqcomd 2732 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵))) |
23 | 22 | oveq2d 7432 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵)))) |
24 | 23 | oveq2d 7432 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
25 | 18, 24 | breqtrd 5171 | . 2 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
26 | modval 13885 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) | |
27 | 9, 2, 26 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
28 | modval 13885 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
29 | 1, 2, 28 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
30 | 25, 27, 29 | 3brtr4d 5177 | 1 ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 · cmul 11154 ℝ*cxr 11288 < clt 11289 − cmin 11485 / cdiv 11912 ℝ+crp 13022 [,)cico 13374 [,]cicc 13375 ⌊cfl 13804 mod cmo 13883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-ico 13378 df-icc 13379 df-fl 13806 df-mod 13884 |
This theorem is referenced by: fouriersw 45888 |
Copyright terms: Public domain | W3C validator |