Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmod Structured version   Visualization version   GIF version

Theorem ltmod 40665
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltmod.a (𝜑𝐴 ∈ ℝ)
ltmod.b (𝜑𝐵 ∈ ℝ+)
ltmod.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
Assertion
Ref Expression
ltmod (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))

Proof of Theorem ltmod
StepHypRef Expression
1 ltmod.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 ltmod.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
31, 2modcld 12969 . . . . . . 7 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
41, 3resubcld 10782 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
51rexrd 10406 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
6 icossre 12542 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
74, 5, 6syl2anc 581 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
8 ltmod.c . . . . 5 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
97, 8sseldd 3828 . . . 4 (𝜑𝐶 ∈ ℝ)
102rpred 12156 . . . . 5 (𝜑𝐵 ∈ ℝ)
119, 2rerpdivcld 12187 . . . . . . 7 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1211flcld 12894 . . . . . 6 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ)
1312zred 11810 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
1410, 13remulcld 10387 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ)
154rexrd 10406 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
16 icoltub 40530 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴)
1715, 5, 8, 16syl3anc 1496 . . . 4 (𝜑𝐶 < 𝐴)
189, 1, 14, 17ltsub1dd 10964 . . 3 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
19 icossicc 12549 . . . . . . . 8 ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)
2019, 8sseldi 3825 . . . . . . 7 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
211, 2, 20lefldiveq 40304 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
2221eqcomd 2831 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵)))
2322oveq2d 6921 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2423oveq2d 6921 . . 3 (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2518, 24breqtrd 4899 . 2 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
26 modval 12965 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
279, 2, 26syl2anc 581 . 2 (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
28 modval 12965 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
291, 2, 28syl2anc 581 . 2 (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
3025, 27, 293brtr4d 4905 1 (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wss 3798   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251   · cmul 10257  *cxr 10390   < clt 10391  cmin 10585   / cdiv 11009  +crp 12112  [,)cico 12465  [,]cicc 12466  cfl 12886   mod cmo 12963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-icc 12470  df-fl 12888  df-mod 12964
This theorem is referenced by:  fouriersw  41242
  Copyright terms: Public domain W3C validator