Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmod Structured version   Visualization version   GIF version

Theorem ltmod 42797
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltmod.a (𝜑𝐴 ∈ ℝ)
ltmod.b (𝜑𝐵 ∈ ℝ+)
ltmod.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
Assertion
Ref Expression
ltmod (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))

Proof of Theorem ltmod
StepHypRef Expression
1 ltmod.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 ltmod.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
31, 2modcld 13413 . . . . . . 7 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
41, 3resubcld 11225 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
51rexrd 10848 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
6 icossre 12981 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
74, 5, 6syl2anc 587 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
8 ltmod.c . . . . 5 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
97, 8sseldd 3888 . . . 4 (𝜑𝐶 ∈ ℝ)
102rpred 12593 . . . . 5 (𝜑𝐵 ∈ ℝ)
119, 2rerpdivcld 12624 . . . . . . 7 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1211flcld 13338 . . . . . 6 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ)
1312zred 12247 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
1410, 13remulcld 10828 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ)
154rexrd 10848 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
16 icoltub 42662 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴)
1715, 5, 8, 16syl3anc 1373 . . . 4 (𝜑𝐶 < 𝐴)
189, 1, 14, 17ltsub1dd 11409 . . 3 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
19 icossicc 12989 . . . . . . . 8 ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)
2019, 8sseldi 3885 . . . . . . 7 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
211, 2, 20lefldiveq 42445 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
2221eqcomd 2742 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵)))
2322oveq2d 7207 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2423oveq2d 7207 . . 3 (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2518, 24breqtrd 5065 . 2 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
26 modval 13409 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
279, 2, 26syl2anc 587 . 2 (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
28 modval 13409 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
291, 2, 28syl2anc 587 . 2 (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
3025, 27, 293brtr4d 5071 1 (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wss 3853   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693   · cmul 10699  *cxr 10831   < clt 10832  cmin 11027   / cdiv 11454  +crp 12551  [,)cico 12902  [,]cicc 12903  cfl 13330   mod cmo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-icc 12907  df-fl 13332  df-mod 13408
This theorem is referenced by:  fouriersw  43390
  Copyright terms: Public domain W3C validator