| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmod | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltmod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltmod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| ltmod.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) |
| Ref | Expression |
|---|---|
| ltmod | ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmod.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltmod.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | 1, 2 | modcld 13789 | . . . . . . 7 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
| 4 | 1, 3 | resubcld 11555 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
| 5 | 1 | rexrd 11172 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 6 | icossre 13338 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ) |
| 8 | ltmod.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) | |
| 9 | 7, 8 | sseldd 3932 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 10 | 2 | rpred 12944 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 11 | 9, 2 | rerpdivcld 12975 | . . . . . . 7 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
| 12 | 11 | flcld 13712 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ) |
| 13 | 12 | zred 12587 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
| 14 | 10, 13 | remulcld 11152 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ) |
| 15 | 4 | rexrd 11172 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
| 16 | icoltub 45622 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴) | |
| 17 | 15, 5, 8, 16 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) |
| 18 | 9, 1, 14, 17 | ltsub1dd 11739 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
| 19 | icossicc 13346 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) | |
| 20 | 19, 8 | sselid 3929 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
| 21 | 1, 2, 20 | lefldiveq 45407 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
| 22 | 21 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵))) |
| 23 | 22 | oveq2d 7371 | . . . 4 ⊢ (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵)))) |
| 24 | 23 | oveq2d 7371 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 25 | 18, 24 | breqtrd 5121 | . 2 ⊢ (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 26 | modval 13785 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) | |
| 27 | 9, 2, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵))))) |
| 28 | modval 13785 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 29 | 1, 2, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 30 | 25, 27, 29 | 3brtr4d 5127 | 1 ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 · cmul 11021 ℝ*cxr 11155 < clt 11156 − cmin 11354 / cdiv 11784 ℝ+crp 12900 [,)cico 13257 [,]cicc 13258 ⌊cfl 13704 mod cmo 13783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-ico 13261 df-icc 13262 df-fl 13706 df-mod 13784 |
| This theorem is referenced by: fouriersw 46343 |
| Copyright terms: Public domain | W3C validator |