Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmod Structured version   Visualization version   GIF version

Theorem ltmod 45620
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltmod.a (𝜑𝐴 ∈ ℝ)
ltmod.b (𝜑𝐵 ∈ ℝ+)
ltmod.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
Assertion
Ref Expression
ltmod (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))

Proof of Theorem ltmod
StepHypRef Expression
1 ltmod.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 ltmod.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
31, 2modcld 13797 . . . . . . 7 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
41, 3resubcld 11566 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
51rexrd 11184 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
6 icossre 13349 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
74, 5, 6syl2anc 584 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ℝ)
8 ltmod.c . . . . 5 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴))
97, 8sseldd 3938 . . . 4 (𝜑𝐶 ∈ ℝ)
102rpred 12955 . . . . 5 (𝜑𝐵 ∈ ℝ)
119, 2rerpdivcld 12986 . . . . . . 7 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1211flcld 13720 . . . . . 6 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℤ)
1312zred 12598 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
1410, 13remulcld 11164 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) ∈ ℝ)
154rexrd 11184 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
16 icoltub 45490 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) → 𝐶 < 𝐴)
1715, 5, 8, 16syl3anc 1373 . . . 4 (𝜑𝐶 < 𝐴)
189, 1, 14, 17ltsub1dd 11750 . . 3 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
19 icossicc 13357 . . . . . . . 8 ((𝐴 − (𝐴 mod 𝐵))[,)𝐴) ⊆ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)
2019, 8sselid 3935 . . . . . . 7 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
211, 2, 20lefldiveq 45274 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
2221eqcomd 2735 . . . . 5 (𝜑 → (⌊‘(𝐶 / 𝐵)) = (⌊‘(𝐴 / 𝐵)))
2322oveq2d 7369 . . . 4 (𝜑 → (𝐵 · (⌊‘(𝐶 / 𝐵))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2423oveq2d 7369 . . 3 (𝜑 → (𝐴 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2518, 24breqtrd 5121 . 2 (𝜑 → (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))) < (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
26 modval 13793 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
279, 2, 26syl2anc 584 . 2 (𝜑 → (𝐶 mod 𝐵) = (𝐶 − (𝐵 · (⌊‘(𝐶 / 𝐵)))))
28 modval 13793 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
291, 2, 28syl2anc 584 . 2 (𝜑 → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
3025, 27, 293brtr4d 5127 1 (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027   · cmul 11033  *cxr 11167   < clt 11168  cmin 11365   / cdiv 11795  +crp 12911  [,)cico 13268  [,]cicc 13269  cfl 13712   mod cmo 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-icc 13273  df-fl 13714  df-mod 13792
This theorem is referenced by:  fouriersw  46213
  Copyright terms: Public domain W3C validator