Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem43 Structured version   Visualization version   GIF version

Theorem fourierdlem43 46071
Description: 𝐾 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem43.1 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem43 𝐾:(-π[,]π)⟶ℝ

Proof of Theorem fourierdlem43
StepHypRef Expression
1 fourierdlem43.1 . 2 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
2 1red 11291 . . 3 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 1 ∈ ℝ)
3 pire 26518 . . . . . . . 8 π ∈ ℝ
43a1i 11 . . . . . . 7 (𝑠 ∈ (-π[,]π) → π ∈ ℝ)
54renegcld 11717 . . . . . 6 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ)
6 id 22 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ (-π[,]π))
7 eliccre 45423 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
85, 4, 6, 7syl3anc 1371 . . . . 5 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
98adantr 480 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℝ)
10 2re 12367 . . . . . 6 2 ∈ ℝ
1110a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℝ)
129rehalfcld 12540 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℝ)
1312resincld 16191 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℝ)
1411, 13remulcld 11320 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
15 2cnd 12371 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
1613recnd 11318 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 12397 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
19 0xr 11337 . . . . . . . . . 10 0 ∈ ℝ*
2019a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 ∈ ℝ*)
2110, 3remulcli 11306 . . . . . . . . . . 11 (2 · π) ∈ ℝ
2221rexri 11348 . . . . . . . . . 10 (2 · π) ∈ ℝ*
2322a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (2 · π) ∈ ℝ*)
248adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ ℝ)
25 simpr 484 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 < 𝑠)
2621a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
275rexrd 11340 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ*)
284rexrd 11340 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → π ∈ ℝ*)
29 iccleub 13462 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → 𝑠 ≤ π)
3027, 28, 6, 29syl3anc 1371 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → 𝑠 ≤ π)
31 pirp 26521 . . . . . . . . . . . . 13 π ∈ ℝ+
32 2timesgt 45203 . . . . . . . . . . . . 13 (π ∈ ℝ+ → π < (2 · π))
3331, 32ax-mp 5 . . . . . . . . . . . 12 π < (2 · π)
3433a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → π < (2 · π))
358, 4, 26, 30, 34lelttrd 11448 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) → 𝑠 < (2 · π))
3635adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 < (2 · π))
3720, 23, 24, 25, 36eliood 45416 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ (0(,)(2 · π)))
38 sinaover2ne0 45789 . . . . . . . 8 (𝑠 ∈ (0(,)(2 · π)) → (sin‘(𝑠 / 2)) ≠ 0)
3937, 38syl 17 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
4039adantlr 714 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
418ad2antrr 725 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ ℝ)
42 iccgelb 13463 . . . . . . . . . 10 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → -π ≤ 𝑠)
4327, 28, 6, 42syl3anc 1371 . . . . . . . . 9 (𝑠 ∈ (-π[,]π) → -π ≤ 𝑠)
4443ad2antrr 725 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ≤ 𝑠)
45 0red 11293 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 0 ∈ ℝ)
46 neqne 2954 . . . . . . . . . 10 𝑠 = 0 → 𝑠 ≠ 0)
4746ad2antlr 726 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ≠ 0)
48 simpr 484 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → ¬ 0 < 𝑠)
4941, 45, 47, 48lttri5d 45214 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 < 0)
505ad2antrr 725 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ∈ ℝ)
51 elico2 13471 . . . . . . . . 9 ((-π ∈ ℝ ∧ 0 ∈ ℝ*) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5250, 19, 51sylancl 585 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5341, 44, 49, 52mpbir3and 1342 . . . . . . 7 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ (-π[,)0))
543renegcli 11597 . . . . . . . . . . . . . . 15 -π ∈ ℝ
55 elicore 13459 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 𝑠 ∈ (-π[,)0)) → 𝑠 ∈ ℝ)
5654, 55mpan 689 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℝ)
5756recnd 11318 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℂ)
58 2cnd 12371 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ∈ ℂ)
5917a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ≠ 0)
6057, 58, 59divnegd 12083 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -(𝑠 / 2) = (-𝑠 / 2))
6160eqcomd 2746 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) = -(𝑠 / 2))
6261fveq2d 6924 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) = (sin‘-(𝑠 / 2)))
6362negeqd 11530 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = -(sin‘-(𝑠 / 2)))
6457halfcld 12538 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (𝑠 / 2) ∈ ℂ)
65 sinneg 16194 . . . . . . . . . . 11 ((𝑠 / 2) ∈ ℂ → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6664, 65syl 17 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6766negeqd 11530 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘-(𝑠 / 2)) = --(sin‘(𝑠 / 2)))
6864sincld 16178 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ∈ ℂ)
6968negnegd 11638 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → --(sin‘(𝑠 / 2)) = (sin‘(𝑠 / 2)))
7063, 67, 693eqtrd 2784 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = (sin‘(𝑠 / 2)))
7157negcld 11634 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℂ)
7271halfcld 12538 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) ∈ ℂ)
7372sincld 16178 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ∈ ℂ)
7419a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 ∈ ℝ*)
7522a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ*)
7656renegcld 11717 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℝ)
7754a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ)
7877rexrd 11340 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ*)
79 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ (-π[,)0))
80 icoltub 45426 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → 𝑠 < 0)
8178, 74, 79, 80syl3anc 1371 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → 𝑠 < 0)
8256lt0neg1d 11859 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (𝑠 < 0 ↔ 0 < -𝑠))
8381, 82mpbid 232 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 < -𝑠)
843a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π ∈ ℝ)
8521a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ)
86 icogelb 13458 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → -π ≤ 𝑠)
8778, 74, 79, 86syl3anc 1371 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ≤ 𝑠)
8884, 56, 87lenegcon1d 11872 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -𝑠 ≤ π)
8933a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π < (2 · π))
9076, 84, 85, 88, 89lelttrd 11448 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 < (2 · π))
9174, 75, 76, 83, 90eliood 45416 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ (0(,)(2 · π)))
92 sinaover2ne0 45789 . . . . . . . . . 10 (-𝑠 ∈ (0(,)(2 · π)) → (sin‘(-𝑠 / 2)) ≠ 0)
9391, 92syl 17 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ≠ 0)
9473, 93negne0d 11645 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) ≠ 0)
9570, 94eqnetrrd 3015 . . . . . . 7 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ≠ 0)
9653, 95syl 17 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
9740, 96pm2.61dan 812 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
9815, 16, 18, 97mulne0d 11942 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
999, 14, 98redivcld 12122 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
1002, 99ifclda 4583 . 2 (𝑠 ∈ (-π[,]π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
1011, 100fmpti 7146 1 𝐾:(-π[,]π)⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  2c2 12348  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  sincsin 16111  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem55  46082  fourierdlem62  46089  fourierdlem66  46093  fourierdlem77  46104  fourierdlem85  46112  fourierdlem88  46115  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator