Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem43 Structured version   Visualization version   GIF version

Theorem fourierdlem43 46106
Description: 𝐾 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem43.1 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem43 𝐾:(-π[,]π)⟶ℝ

Proof of Theorem fourierdlem43
StepHypRef Expression
1 fourierdlem43.1 . 2 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
2 1red 11260 . . 3 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 1 ∈ ℝ)
3 pire 26515 . . . . . . . 8 π ∈ ℝ
43a1i 11 . . . . . . 7 (𝑠 ∈ (-π[,]π) → π ∈ ℝ)
54renegcld 11688 . . . . . 6 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ)
6 id 22 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ (-π[,]π))
7 eliccre 45458 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
85, 4, 6, 7syl3anc 1370 . . . . 5 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
98adantr 480 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℝ)
10 2re 12338 . . . . . 6 2 ∈ ℝ
1110a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℝ)
129rehalfcld 12511 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℝ)
1312resincld 16176 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℝ)
1411, 13remulcld 11289 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
15 2cnd 12342 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
1613recnd 11287 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 12368 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
19 0xr 11306 . . . . . . . . . 10 0 ∈ ℝ*
2019a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 ∈ ℝ*)
2110, 3remulcli 11275 . . . . . . . . . . 11 (2 · π) ∈ ℝ
2221rexri 11317 . . . . . . . . . 10 (2 · π) ∈ ℝ*
2322a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (2 · π) ∈ ℝ*)
248adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ ℝ)
25 simpr 484 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 < 𝑠)
2621a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
275rexrd 11309 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ*)
284rexrd 11309 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → π ∈ ℝ*)
29 iccleub 13439 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → 𝑠 ≤ π)
3027, 28, 6, 29syl3anc 1370 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → 𝑠 ≤ π)
31 pirp 26518 . . . . . . . . . . . . 13 π ∈ ℝ+
32 2timesgt 45239 . . . . . . . . . . . . 13 (π ∈ ℝ+ → π < (2 · π))
3331, 32ax-mp 5 . . . . . . . . . . . 12 π < (2 · π)
3433a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → π < (2 · π))
358, 4, 26, 30, 34lelttrd 11417 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) → 𝑠 < (2 · π))
3635adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 < (2 · π))
3720, 23, 24, 25, 36eliood 45451 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ (0(,)(2 · π)))
38 sinaover2ne0 45824 . . . . . . . 8 (𝑠 ∈ (0(,)(2 · π)) → (sin‘(𝑠 / 2)) ≠ 0)
3937, 38syl 17 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
4039adantlr 715 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
418ad2antrr 726 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ ℝ)
42 iccgelb 13440 . . . . . . . . . 10 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → -π ≤ 𝑠)
4327, 28, 6, 42syl3anc 1370 . . . . . . . . 9 (𝑠 ∈ (-π[,]π) → -π ≤ 𝑠)
4443ad2antrr 726 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ≤ 𝑠)
45 0red 11262 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 0 ∈ ℝ)
46 neqne 2946 . . . . . . . . . 10 𝑠 = 0 → 𝑠 ≠ 0)
4746ad2antlr 727 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ≠ 0)
48 simpr 484 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → ¬ 0 < 𝑠)
4941, 45, 47, 48lttri5d 45250 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 < 0)
505ad2antrr 726 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ∈ ℝ)
51 elico2 13448 . . . . . . . . 9 ((-π ∈ ℝ ∧ 0 ∈ ℝ*) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5250, 19, 51sylancl 586 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5341, 44, 49, 52mpbir3and 1341 . . . . . . 7 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ (-π[,)0))
543renegcli 11568 . . . . . . . . . . . . . . 15 -π ∈ ℝ
55 elicore 13436 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 𝑠 ∈ (-π[,)0)) → 𝑠 ∈ ℝ)
5654, 55mpan 690 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℝ)
5756recnd 11287 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℂ)
58 2cnd 12342 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ∈ ℂ)
5917a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ≠ 0)
6057, 58, 59divnegd 12054 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -(𝑠 / 2) = (-𝑠 / 2))
6160eqcomd 2741 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) = -(𝑠 / 2))
6261fveq2d 6911 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) = (sin‘-(𝑠 / 2)))
6362negeqd 11500 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = -(sin‘-(𝑠 / 2)))
6457halfcld 12509 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (𝑠 / 2) ∈ ℂ)
65 sinneg 16179 . . . . . . . . . . 11 ((𝑠 / 2) ∈ ℂ → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6664, 65syl 17 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6766negeqd 11500 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘-(𝑠 / 2)) = --(sin‘(𝑠 / 2)))
6864sincld 16163 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ∈ ℂ)
6968negnegd 11609 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → --(sin‘(𝑠 / 2)) = (sin‘(𝑠 / 2)))
7063, 67, 693eqtrd 2779 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = (sin‘(𝑠 / 2)))
7157negcld 11605 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℂ)
7271halfcld 12509 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) ∈ ℂ)
7372sincld 16163 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ∈ ℂ)
7419a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 ∈ ℝ*)
7522a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ*)
7656renegcld 11688 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℝ)
7754a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ)
7877rexrd 11309 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ*)
79 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ (-π[,)0))
80 icoltub 45461 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → 𝑠 < 0)
8178, 74, 79, 80syl3anc 1370 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → 𝑠 < 0)
8256lt0neg1d 11830 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (𝑠 < 0 ↔ 0 < -𝑠))
8381, 82mpbid 232 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 < -𝑠)
843a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π ∈ ℝ)
8521a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ)
86 icogelb 13435 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → -π ≤ 𝑠)
8778, 74, 79, 86syl3anc 1370 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ≤ 𝑠)
8884, 56, 87lenegcon1d 11843 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -𝑠 ≤ π)
8933a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π < (2 · π))
9076, 84, 85, 88, 89lelttrd 11417 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 < (2 · π))
9174, 75, 76, 83, 90eliood 45451 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ (0(,)(2 · π)))
92 sinaover2ne0 45824 . . . . . . . . . 10 (-𝑠 ∈ (0(,)(2 · π)) → (sin‘(-𝑠 / 2)) ≠ 0)
9391, 92syl 17 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ≠ 0)
9473, 93negne0d 11616 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) ≠ 0)
9570, 94eqnetrrd 3007 . . . . . . 7 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ≠ 0)
9653, 95syl 17 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
9740, 96pm2.61dan 813 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
9815, 16, 18, 97mulne0d 11913 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
999, 14, 98redivcld 12093 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
1002, 99ifclda 4566 . 2 (𝑠 ∈ (-π[,]π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
1011, 100fmpti 7132 1 𝐾:(-π[,]π)⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  ifcif 4531   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  -cneg 11491   / cdiv 11918  2c2 12319  +crp 13032  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  sincsin 16096  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem55  46117  fourierdlem62  46124  fourierdlem66  46128  fourierdlem77  46139  fourierdlem85  46147  fourierdlem88  46150  fourierdlem103  46165  fourierdlem104  46166
  Copyright terms: Public domain W3C validator