Proof of Theorem fourierdlem43
Step | Hyp | Ref
| Expression |
1 | | fourierdlem43.1 |
. 2
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
2 | | 1red 10976 |
. . 3
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 = 0) → 1 ∈
ℝ) |
3 | | pire 25615 |
. . . . . . . 8
⊢ π
∈ ℝ |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ (-π[,]π) →
π ∈ ℝ) |
5 | 4 | renegcld 11402 |
. . . . . 6
⊢ (𝑠 ∈ (-π[,]π) →
-π ∈ ℝ) |
6 | | id 22 |
. . . . . 6
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 ∈
(-π[,]π)) |
7 | | eliccre 43043 |
. . . . . 6
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈
ℝ) |
8 | 5, 4, 6, 7 | syl3anc 1370 |
. . . . 5
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 ∈
ℝ) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → 𝑠 ∈
ℝ) |
10 | | 2re 12047 |
. . . . . 6
⊢ 2 ∈
ℝ |
11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → 2
∈ ℝ) |
12 | 9 | rehalfcld 12220 |
. . . . . 6
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → (𝑠 / 2) ∈
ℝ) |
13 | 12 | resincld 15852 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) →
(sin‘(𝑠 / 2)) ∈
ℝ) |
14 | 11, 13 | remulcld 11005 |
. . . 4
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → (2
· (sin‘(𝑠 /
2))) ∈ ℝ) |
15 | | 2cnd 12051 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → 2
∈ ℂ) |
16 | 13 | recnd 11003 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) →
(sin‘(𝑠 / 2)) ∈
ℂ) |
17 | | 2ne0 12077 |
. . . . . 6
⊢ 2 ≠
0 |
18 | 17 | a1i 11 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → 2 ≠
0) |
19 | | 0xr 11022 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → 0 ∈
ℝ*) |
21 | 10, 3 | remulcli 10991 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
22 | 21 | rexri 11033 |
. . . . . . . . . 10
⊢ (2
· π) ∈ ℝ* |
23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → (2 ·
π) ∈ ℝ*) |
24 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → 𝑠 ∈
ℝ) |
25 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → 0 < 𝑠) |
26 | 21 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,]π) → (2
· π) ∈ ℝ) |
27 | 5 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,]π) →
-π ∈ ℝ*) |
28 | 4 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,]π) →
π ∈ ℝ*) |
29 | | iccleub 13134 |
. . . . . . . . . . . 12
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑠 ∈ (-π[,]π)) →
𝑠 ≤
π) |
30 | 27, 28, 6, 29 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 ≤
π) |
31 | | pirp 25618 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ+ |
32 | | 2timesgt 42827 |
. . . . . . . . . . . . 13
⊢ (π
∈ ℝ+ → π < (2 · π)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ π <
(2 · π) |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,]π) →
π < (2 · π)) |
35 | 8, 4, 26, 30, 34 | lelttrd 11133 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 < (2 ·
π)) |
36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → 𝑠 < (2 ·
π)) |
37 | 20, 23, 24, 25, 36 | eliood 43036 |
. . . . . . . 8
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) → 𝑠 ∈ (0(,)(2 ·
π))) |
38 | | sinaover2ne0 43409 |
. . . . . . . 8
⊢ (𝑠 ∈ (0(,)(2 · π))
→ (sin‘(𝑠 / 2))
≠ 0) |
39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ ((𝑠 ∈ (-π[,]π) ∧ 0
< 𝑠) →
(sin‘(𝑠 / 2)) ≠
0) |
40 | 39 | adantlr 712 |
. . . . . 6
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ 0 <
𝑠) → (sin‘(𝑠 / 2)) ≠ 0) |
41 | 8 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → 𝑠 ∈
ℝ) |
42 | | iccgelb 13135 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑠 ∈ (-π[,]π)) →
-π ≤ 𝑠) |
43 | 27, 28, 6, 42 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,]π) →
-π ≤ 𝑠) |
44 | 43 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → -π ≤
𝑠) |
45 | | 0red 10978 |
. . . . . . . . 9
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → 0 ∈
ℝ) |
46 | | neqne 2951 |
. . . . . . . . . 10
⊢ (¬
𝑠 = 0 → 𝑠 ≠ 0) |
47 | 46 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → 𝑠 ≠ 0) |
48 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → ¬ 0 <
𝑠) |
49 | 41, 45, 47, 48 | lttri5d 42838 |
. . . . . . . 8
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → 𝑠 < 0) |
50 | 5 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → -π ∈
ℝ) |
51 | | elico2 13143 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ*) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤
𝑠 ∧ 𝑠 < 0))) |
52 | 50, 19, 51 | sylancl 586 |
. . . . . . . 8
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → (𝑠 ∈ (-π[,)0) ↔
(𝑠 ∈ ℝ ∧
-π ≤ 𝑠 ∧ 𝑠 < 0))) |
53 | 41, 44, 49, 52 | mpbir3and 1341 |
. . . . . . 7
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) → 𝑠 ∈
(-π[,)0)) |
54 | 3 | renegcli 11282 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ |
55 | | elicore 13131 |
. . . . . . . . . . . . . . 15
⊢ ((-π
∈ ℝ ∧ 𝑠
∈ (-π[,)0)) → 𝑠 ∈ ℝ) |
56 | 54, 55 | mpan 687 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (-π[,)0) → 𝑠 ∈
ℝ) |
57 | 56 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → 𝑠 ∈
ℂ) |
58 | | 2cnd 12051 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → 2
∈ ℂ) |
59 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → 2
≠ 0) |
60 | 57, 58, 59 | divnegd 11764 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) →
-(𝑠 / 2) = (-𝑠 / 2)) |
61 | 60 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) →
(-𝑠 / 2) = -(𝑠 / 2)) |
62 | 61 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘(-𝑠 / 2)) =
(sin‘-(𝑠 /
2))) |
63 | 62 | negeqd 11215 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,)0) →
-(sin‘(-𝑠 / 2)) =
-(sin‘-(𝑠 /
2))) |
64 | 57 | halfcld 12218 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) →
(𝑠 / 2) ∈
ℂ) |
65 | | sinneg 15855 |
. . . . . . . . . . 11
⊢ ((𝑠 / 2) ∈ ℂ →
(sin‘-(𝑠 / 2)) =
-(sin‘(𝑠 /
2))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘-(𝑠 / 2)) =
-(sin‘(𝑠 /
2))) |
67 | 66 | negeqd 11215 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,)0) →
-(sin‘-(𝑠 / 2)) =
--(sin‘(𝑠 /
2))) |
68 | 64 | sincld 15839 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘(𝑠 / 2)) ∈
ℂ) |
69 | 68 | negnegd 11323 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,)0) →
--(sin‘(𝑠 / 2)) =
(sin‘(𝑠 /
2))) |
70 | 63, 67, 69 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝑠 ∈ (-π[,)0) →
-(sin‘(-𝑠 / 2)) =
(sin‘(𝑠 /
2))) |
71 | 57 | negcld 11319 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) →
-𝑠 ∈
ℂ) |
72 | 71 | halfcld 12218 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,)0) →
(-𝑠 / 2) ∈
ℂ) |
73 | 72 | sincld 15839 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘(-𝑠 / 2)) ∈
ℂ) |
74 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) → 0
∈ ℝ*) |
75 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) → (2
· π) ∈ ℝ*) |
76 | 56 | renegcld 11402 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) →
-𝑠 ∈
ℝ) |
77 | 54 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (-π[,)0) → -π
∈ ℝ) |
78 | 77 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → -π
∈ ℝ*) |
79 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → 𝑠 ∈
(-π[,)0)) |
80 | | icoltub 43046 |
. . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑠 ∈ (-π[,)0)) →
𝑠 < 0) |
81 | 78, 74, 79, 80 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) → 𝑠 < 0) |
82 | 56 | lt0neg1d 11544 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) →
(𝑠 < 0 ↔ 0 <
-𝑠)) |
83 | 81, 82 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) → 0
< -𝑠) |
84 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) → π
∈ ℝ) |
85 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) → (2
· π) ∈ ℝ) |
86 | | icogelb 13130 |
. . . . . . . . . . . . . 14
⊢ ((-π
∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑠 ∈ (-π[,)0)) →
-π ≤ 𝑠) |
87 | 78, 74, 79, 86 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (-π[,)0) → -π
≤ 𝑠) |
88 | 84, 56, 87 | lenegcon1d 11557 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) →
-𝑠 ≤
π) |
89 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (-π[,)0) → π
< (2 · π)) |
90 | 76, 84, 85, 88, 89 | lelttrd 11133 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (-π[,)0) →
-𝑠 < (2 ·
π)) |
91 | 74, 75, 76, 83, 90 | eliood 43036 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,)0) →
-𝑠 ∈ (0(,)(2 ·
π))) |
92 | | sinaover2ne0 43409 |
. . . . . . . . . 10
⊢ (-𝑠 ∈ (0(,)(2 · π))
→ (sin‘(-𝑠 / 2))
≠ 0) |
93 | 91, 92 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘(-𝑠 / 2)) ≠
0) |
94 | 73, 93 | negne0d 11330 |
. . . . . . . 8
⊢ (𝑠 ∈ (-π[,)0) →
-(sin‘(-𝑠 / 2)) ≠
0) |
95 | 70, 94 | eqnetrrd 3012 |
. . . . . . 7
⊢ (𝑠 ∈ (-π[,)0) →
(sin‘(𝑠 / 2)) ≠
0) |
96 | 53, 95 | syl 17 |
. . . . . 6
⊢ (((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) ∧ ¬ 0
< 𝑠) →
(sin‘(𝑠 / 2)) ≠
0) |
97 | 40, 96 | pm2.61dan 810 |
. . . . 5
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) →
(sin‘(𝑠 / 2)) ≠
0) |
98 | 15, 16, 18, 97 | mulne0d 11627 |
. . . 4
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → (2
· (sin‘(𝑠 /
2))) ≠ 0) |
99 | 9, 14, 98 | redivcld 11803 |
. . 3
⊢ ((𝑠 ∈ (-π[,]π) ∧
¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈
ℝ) |
100 | 2, 99 | ifclda 4494 |
. 2
⊢ (𝑠 ∈ (-π[,]π) →
if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈
ℝ) |
101 | 1, 100 | fmpti 6986 |
1
⊢ 𝐾:(-π[,]π)⟶ℝ |