MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idadm Structured version   Visualization version   GIF version

Theorem idadm 18017
Description: Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idahom.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idadm (𝜑 → (doma‘(𝐼𝑋)) = 𝑋)

Proof of Theorem idadm
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 idahom.x . . 3 (𝜑𝑋𝐵)
5 eqid 2730 . . 3 (Homa𝐶) = (Homa𝐶)
61, 2, 3, 4, 5idahom 18016 . 2 (𝜑 → (𝐼𝑋) ∈ (𝑋(Homa𝐶)𝑋))
75homadm 17996 . 2 ((𝐼𝑋) ∈ (𝑋(Homa𝐶)𝑋) → (doma‘(𝐼𝑋)) = 𝑋)
86, 7syl 17 1 (𝜑 → (doma‘(𝐼𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6544  (class class class)co 7413  Basecbs 17150  Catccat 17614  domacdoma 17976  Homachoma 17979  Idacida 18009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-1st 7979  df-2nd 7980  df-cat 17618  df-cid 17619  df-doma 17980  df-homa 17982  df-ida 18011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator