Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgstr | Structured version Visualization version GIF version |
Description: A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgstr.1 | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) |
Ref | Expression |
---|---|
idlsrgstr | ⊢ 𝑊 Struct 〈1, ;10〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgstr.1 | . 2 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) | |
2 | eqid 2737 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
3 | 2 | rngstr 17078 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} Struct 〈1, 3〉 |
4 | 9nn 12144 | . . . 4 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17132 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12641 | . . . 4 ⊢ 9 < ;10 | |
7 | 10nn 12526 | . . . 4 ⊢ ;10 ∈ ℕ | |
8 | plendx 17146 | . . . 4 ⊢ (le‘ndx) = ;10 | |
9 | 4, 5, 6, 7, 8 | strle2 16930 | . . 3 ⊢ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} Struct 〈9, ;10〉 |
10 | 3lt9 12250 | . . 3 ⊢ 3 < 9 | |
11 | 3, 9, 10 | strleun 16928 | . 2 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) Struct 〈1, ;10〉 |
12 | 1, 11 | eqbrtri 5108 | 1 ⊢ 𝑊 Struct 〈1, ;10〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3895 {cpr 4573 {ctp 4575 〈cop 4577 class class class wbr 5087 ‘cfv 6465 0cc0 10944 1c1 10945 3c3 12102 9c9 12108 ;cdc 12510 Struct cstr 16917 ndxcnx 16964 Basecbs 16982 +gcplusg 17032 .rcmulr 17033 TopSetcts 17038 lecple 17039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-fz 13313 df-struct 16918 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-mulr 17046 df-tset 17051 df-ple 17052 |
This theorem is referenced by: idlsrgbas 31754 idlsrgplusg 31755 idlsrgmulr 31757 idlsrgtset 31758 |
Copyright terms: Public domain | W3C validator |