![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restcldr | Structured version Visualization version GIF version |
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
restcldr | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 23055 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | cldss 23058 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
4 | 2 | restcld 23201 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
5 | 1, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
6 | incld 23072 | . . . . . 6 ⊢ ((𝑣 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) | |
7 | 6 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) |
8 | eleq1 2832 | . . . . 5 ⊢ (𝐵 = (𝑣 ∩ 𝐴) → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽))) | |
9 | 7, 8 | syl5ibrcom 247 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
10 | 9 | rexlimdva 3161 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
11 | 5, 10 | sylbid 240 | . 2 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) → 𝐵 ∈ (Clsd‘𝐽))) |
12 | 11 | imp 406 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-en 9004 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 |
This theorem is referenced by: paste 23323 qtoprest 23746 zcld2 24856 sszcld 24858 logdmopn 26709 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 |
Copyright terms: Public domain | W3C validator |