MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcldr Structured version   Visualization version   GIF version

Theorem restcldr 22898
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
restcldr ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))

Proof of Theorem restcldr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22750 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2732 . . . . 5 𝐽 = 𝐽
32cldss 22753 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
42restcld 22896 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
51, 3, 4syl2anc 584 . . 3 (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
6 incld 22767 . . . . . 6 ((𝑣 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑣𝐴) ∈ (Clsd‘𝐽))
76ancoms 459 . . . . 5 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝑣𝐴) ∈ (Clsd‘𝐽))
8 eleq1 2821 . . . . 5 (𝐵 = (𝑣𝐴) → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝑣𝐴) ∈ (Clsd‘𝐽)))
97, 8syl5ibrcom 246 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝐵 = (𝑣𝐴) → 𝐵 ∈ (Clsd‘𝐽)))
109rexlimdva 3155 . . 3 (𝐴 ∈ (Clsd‘𝐽) → (∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴) → 𝐵 ∈ (Clsd‘𝐽)))
115, 10sylbid 239 . 2 (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) → 𝐵 ∈ (Clsd‘𝐽)))
1211imp 407 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  cin 3947  wss 3948   cuni 4908  cfv 6543  (class class class)co 7411  t crest 17370  Topctop 22615  Clsdccld 22740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-en 8942  df-fin 8945  df-fi 9408  df-rest 17372  df-topgen 17393  df-top 22616  df-topon 22633  df-bases 22669  df-cld 22743
This theorem is referenced by:  paste  23018  qtoprest  23441  zcld2  24551  sszcld  24553  logdmopn  26381  dvasin  36875  dvacos  36876  dvreasin  36877  dvreacos  36878
  Copyright terms: Public domain W3C validator