![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restcldr | Structured version Visualization version GIF version |
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
restcldr | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22512 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | cldss 22515 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
4 | 2 | restcld 22658 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
5 | 1, 3, 4 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
6 | incld 22529 | . . . . . 6 ⊢ ((𝑣 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) | |
7 | 6 | ancoms 460 | . . . . 5 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) |
8 | eleq1 2822 | . . . . 5 ⊢ (𝐵 = (𝑣 ∩ 𝐴) → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽))) | |
9 | 7, 8 | syl5ibrcom 246 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
10 | 9 | rexlimdva 3156 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
11 | 5, 10 | sylbid 239 | . 2 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) → 𝐵 ∈ (Clsd‘𝐽))) |
12 | 11 | imp 408 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4907 ‘cfv 6540 (class class class)co 7404 ↾t crest 17362 Topctop 22377 Clsdccld 22502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-en 8936 df-fin 8939 df-fi 9402 df-rest 17364 df-topgen 17385 df-top 22378 df-topon 22395 df-bases 22431 df-cld 22505 |
This theorem is referenced by: paste 22780 qtoprest 23203 zcld2 24313 sszcld 24315 logdmopn 26139 dvasin 36510 dvacos 36511 dvreasin 36512 dvreacos 36513 |
Copyright terms: Public domain | W3C validator |